

GGOS — The Global Geodetic Observing System and its Influence on Space Geodetic Infrastructure with focus on VLBI

Torben Schüler

Geodetic Observatory Wettzell Federal Agency for Cartography and Geodesy

Goals and Contents

- GGOS
 - What is GGOS?
 - Drivers for GGOS
 - GGOS Infrastructure
 - GGOS as Observing System
 - GGOS Network and Geodetic Stations
 - Our Challenge ...
- System of Space Geodesy explained
 - VLBI, SLR, GNSS and their synergetic use
- GGOS Site Requirements with Focus on VLBI
- VLBI2010 and the Wettzell Twin Telescope(s)

What is GGOS? Global Geodetic Observing System

Drivers for GGOS

Increasing number of natural hazards and disasters Early prediction and warning

Drivers for GGOS

UNEP

Global climate change (monitoring)

How (in which fields) can Geodesy contribute?

GGOS Infrastructure, GGOS Site: Is this really new for Wettzell?

Basically not, because GO Wettzell is designed to fulfull the role of a *Fundamental Station for Geodesy* by co-location of all important space geodetic techniques at one site.

... but the GGOS initiative is a good opportunity for us to motivate our promoters in order to provide the funding necessary to renew our equipment.

GRAVITY FIELD

. . .

CHAMP

GRACE

GOCE

GRACE Follow-on (from 2017)

OCEAN ALTIMETRY

... and a number of others ...

. . .

. . .

JASON-2

ICE ALTIMETRY

ATMOSPHERE

CHAMP

COSMIC

. . .

MetOp

. . .

MAGNETOSPHERE

SWARM

. . .

EARTH SURFACE

TerraSAR-X

TanDEM-X

+ new mission concepts, satellite constellation, micro satellites, etc. under consideration.

Global Network of Geodetic Stations — Current Network —

Current global network of geodetic observatories and stations:

Source: NASA

- GGOS target network design
 - 30 globally distributed, multi-technique colocated ground stations
 - 4 techniques/site

GGOS Member	States with Co	re site activities:
United States	Germany	China
Korea	Australia	Russia
New Zealand	India	Saudi Arabia
South Africa	Spain	

Our Challenge Illustrated by a Prominent Example: Sea Level Rise Monitoring

Global mean sea level rise observed via satellite altimetry:

- Ocean altimetry satellites usually use GPS, DORIS and SLR for precise orbit determination
- Ellipsoidal height of satellite is derived
- Height difference to sea level is measured by radar altimeter
- Stable coordinate system is required

GGOS as an Observing System: Technical Goals

- Global accuracy of terrestrial reference frame:
 - accurate and accessible @ 1 mm level current state: around 1 cm (position)
 - stability of 0.1 mm/a (velocity)
 in ITRF (International Terrestrial Reference Frame)
- Continuous measurements (time series of Earth rotation parameters, station positions and baselines)
- Measurements in near real-time
- High reliability and redundancy
- Low construction and operating costs regarding the geodetic equipment

GGOS as an Observing System: How to reach these goals ...

- Reduction of random and systematic errors of delay observables.
- Improvement of geographic distribution of antennas.

[Notice: Wettzell is GGOS Legacy Site]

- Increase number of observations ...
- Development of new observing strategies.

Our Challenge Illustrated by a Prominent Example: Sea Level Rise Monitoring

Uncertainty in the ITRF is the *largest source of error* in the global characterization of longterm sea level variation!

Error of 2 mm/a in relative velocity between Earth's mean surface and Earth's mass center results into

0.4 mm/a of error in global mean sea level variation

Scale rate error of

- 0.1 ppb/a causes
- 0.6 mm/a of apparent sea level change

see Velicogna, 2009

Compare with: Mass loss from Greenland ice sheet is approx. 200 Gt/a on average) which causes \geq **0.7 mm/a** of sea level rise Increase of mass loss is expected to be around an additional 30 Gt/a resulting into \geq **0.1 mm/a** of sea level rise.

Goals and Contents

- GGOS
 - What is GGOS?
 - Drivers for GGOS
 - GGOS Infrastructure
 - GGOS as Observing System
 - GGOS Network and Geodetic Stations
 - Our Challenge ...
- System of Space Geodesy explained
 - VLBI, SLR, GNSS and their synergetic use
- GGOS Site Requirements with Focus on VLBI
- VLBI2010 and the Wettzell Twin Telescope(s)

The Main Techniques of Space Geodesy: Very Long Baseline Interferometry (VLBI)

Principle:

- Well-known to the audience ...
- Geodetic VLBI telescopes are usually of relatively small aperture, because focus lies on mechanical stability (and speed)

The Main Techniques of Space Geodesy: Satellite Laser Ranging (SLR)

Principle:

- Generation of short but powerful laser pulses
- High-precision timer start upon departure of photons from the telescope
- Reflexion of laser pulse @ retro reflector(s) of the satellite
- Timer stops upon arrival of pulse at the telescope
- Determination of distance: $d = \Delta t/2 \cdot c$

The Main Techniques of Space Geodesy: Global Navigation Satellite Systems (GNSS)

Principle:

- Correlation of received navigation code signal modulated on 1.5 and 1.2 GHz carrier wave with code replica
- Determination of travel time, conversion into (pseudo-)range measurements
- Geodetic use: carrier phase tracking is of high importance, because of low noise level (precision of around 2 mm)
- USA: GPS; Russia: GLONASS; China: BeiDou; Europe: Galileo

The Main Techniques of Space Geodesy: What do we need these for?

The Main Techniques of Space Geodesy: What do we need these for?

	Parameter Typ	VLBI	GPS/ GLON.	DORIS/ PRARE	SLR	LLR	Alti- metrie	
	Quasar Koord. (ICRF)	X						
	Nutation	X	(X)		(X)	Х		
pole position	Polschwankung	X	Х	Х	Х	X		
	UT1	X						
	Tageslänge (LOD)		Х	Х	Х	X		ך איז
sub-daily	Subtägliche ERPs	Х	Х					Ē
ERP ocean tide amplitudes	ERP Ozeangezeiten- Amplituden	Х	Х		Х		Х) ň
xyz + velocities	Koord.+Geschw.(ITRF)	Х	Х	Х	X	Х	(X)	
geocenter = origin	Geozentrum		(X)	(X)	X		Х	
gravity center	Gravitationsfeld		X	X	X	(X)	Х	
satellite orbits	Bahnen		Х	Х	Х	X	Х	
	LEO-Bahnen		Х	Х	Х		Х	
	Ionosphäre	Х	Х	Х			Х	
	Troposphäre	Х	Х	Х			Х	
time/frequency	Zeit/Freq. Transfer	(X)	Х		(X)			
transfer								

Goals and Contents

- GGOS
 - What is GGOS?
 - Drivers for GGOS
 - GGOS Infrastructure
 - GGOS as Observing System
 - GGOS Network and Geodetic Stations
 - Our Challenge ...
- System of Space Geodesy explained
 - VLBI, SLR, GNSS and their synergetic use
- GGOS Site Requirements with Focus on VLBI
- VLBI2010 and the Wettzell Twin Telescope(s)

GGOS Core Site: *Which requirements are to be met?*

Global Geodetic Observing System (GGOS)

Site Requirements for GGOS Core Sites (Revision 1a)

July 18, 2012

GGOS Core Site: Frequencies Occupied

		Broadcast		Receive	
System Fre		Frequency		Frequency	
	SLR radar	9.4 GHz	Highly Directional 4 kW peak	NA	NA
	VLBI			2 –14 GHz	Highly Directional
	GPS			1227.6 MHz (L1) 1575.4 MHz (L2) 1176.45 MHz (L5)	Hemispherical (sensitive down to the horizon)
	Galileo			1.1 – 1.6 GHz	
	GLONASS			1.1 – 1.6 GHz	
BeiDou	COMPASS			1.1 – 1.6 GHz	
	DORIS	401.25 MHz 2.036 GHz	Omni- Directional	NA	NA

new

potentially science fiction

GGOS Core Site: Communication Requirements

System	Data Volume		
SLR	10 GBytes/day		
VLBI (legacy)	?		
eVLBI	4 Gb/sec		
GNSS*	130 Mbytes/day		
DORIS	General communications		
Control and Monitoring	?		

Note: *baseline - raw 1s data with current satellites and constellations

Note:

Wettzell is currently equipped with a 2 GB internet connection (upload) which is basically sufficient for RTW's current operations.

However, with the additional two TWIN telescopes a multiple of this bandwidth will be needed (>10 Gbit/s).

GGOS Core Site: *Requirements for Local Ties*

GGOS Core Site: *Requirements for Footprint Network*

PRAC

This is required to monitor the stability of the site in order verify that the local measurements are regionally representative.

Goals and Contents

- GGOS
 - What is GGOS?
 - Drivers for GGOS
 - GGOS Infrastructure
 - GGOS as Observing System
 - GGOS Network and Geodetic Stations
 - Our Challenge ...
- System of Space Geodesy explained
 - VLBI, SLR, GNSS and their synergetic use
- GGOS Site Requirements with Focus on VLBI
- VLBI2010 and the Wettzell Twin Telescope(s)

GGOS Core Site: Requirements from VLBI2010

IVS Memorandum 2006-008v01

16 September 2004

"VLBI2010: Current and Future Requirements for Geodetic VLBI Systems"

Arthur Niell, Alan Whitney, Bill Petrachenko, Wolfgang Schlüter, Nancy Vandenberg, Hayo Hase, Yasuhiro Koyama, Chopo Ma, Harald Schuh, Gino Tuccari

VLBI 2010: Main Goals and How-To

from: B. Petrachenko, IVS TecSpec Worksop, 1-2 March 2012, Wettzell

GGOS Core Site: Basic VLBI Requirements

Core Site Description

The GGOS Core Site should have the following systems in place:

VLBI

The VLBI systems should be compatible with VLBI 2010 with the minimum following performance characteristics:

- Antenna with azimuth slew rate >= 5 deg/sec and elevation slew rate >= 1.5 deg/sec; more advanced systems with slew rates of 12 deg/sec in azimuth and 5 deg/sec in elevation will add greater capability to the network and enhance data products;
- Antenna SEFD <2500 J from 2 14 GHz;
- Flexible placement of multiple 1 GHz bands from 2 14 GHz;
- Recording rate up to 4 Gbps for each band;
- Hydrogen maser frequency standard;
- Remote monitor and control capability;
- o Broadband internet connection;
- Modeling or monitoring of signal path length variation< 1mm;
- Continuous operation capability.

For more details see: http://www.haystack.mit.edu/geo/vlbi_td/2010/index.html

• Satellite Laser Ranging [...]

VLBI2010: Synopsis "OLD" versus "NEW"

	Current	VLBI2010
antenna size	5–100 m dish ~ 12 m dish	
slew speed	~20–200 deg/min	≥ 360 deg/min
sensitivity	200–15,000 SEFD	≤ 2,500 SEFD
frequency range	S/X band	~2–14 (18) GHz
recording rate	128, 256 Mbps	8–16 Gbps
data transfer	usually ship disks, some e-transfer	e-transfer, e-VLBI, ship disks when required

ftp://ivscc.gsfc.nasa.gov/ pub/misc/V2C/TM-2009-214180.pdf other aspects include: software correlation automation of data analysis

VLBI2010 Wideband Feed: Broadband Sequence

GGOS Core Site: *TWIN Telescopes - Basic Facts*

Ringfokus-Optik

- 2 identical (mechanical) radio telescopes
- Main reflecotr: 13.2 m aperture
- Surface finish: <0.2 mm RMS
- ALMA mounting
- Sub-reflector with hexapodmounting and ring focus optics
- Triband feed (TTW1, S/X/Ka) and broadband feed (TTW2, 2-14 GHz)
- Antenna speed: az. 12°/s, elevation 6°/s
- 27 bit encoder (0.01 arc sec)

Triband-Feed (S-, X-, Ka-Band)

,Eleven '-Feed (2 ... 11 GHz)

VLBI Telescope Reference Point: Monitoring results for the "old" RTW

RTW (Lösler, 2008)

Tachymeter data:

Method	East	North	Up
2D adjustment + height (NetzCG)	269.71713	187.69011	622.46484
3D adjustment (JAG3D)	269.71715	187.69011	622.46482
circle adjustment	269.71720	187.69008	622.46502
max. difference	0.07 mm	0.03 mm	0.2 mm

Laser tracker data:

Method	East	North	Up
3D adjustment (JAG3D)	269.71739	187.69056	622.46506
Difference to Tachymeter data	0.24 mm	0.45 mm	0.24 mm

- VLBI2010 and GGOS requirements for local ties are pointing towards an uncertainty well better than 1 mm.
- Diurnal and
- **seasonal** variations are to be investigated.
- VLBI2010 is recommending to monitor local ties to VLBI telescopes in a permanent fashion; such investigations are currently performed.