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1 Introduction

Work Package 4 of Hilado is concerned with “bringing it to the user”. As
described in the Activity Plan (de Vos, 2012), we have considered the role
of domain specific languages and analysis tools in the context of minimizing
the amount of redundant calculation performed while developing an anal-
ysis pipeline or during exploratory data analysis. This report will describe
the work carried out so far in this work group and the anticipated directions
of future work.

We begin with an explanation of the kind of analysis we intend to carry
out and the kind of programs that are suitable for analyzing this way. The
syntax of the programs we have to work with turns out not to be a good
fit for our analysis, and we discuss three related ways of improving the fit:
firstly, a “toy” language which makes the dataflow more explicit and is inde-
pendent of any specific astronomical back-end; secondly, an approach based
on execution graphs for the Casa package (NRAO Casa Webpage), described
in detail in Section 5, and finally a version of the ParselTongue (Kettenis
et al., 2006; The ParselTongue Wiki 2015) package that has been adapted to
use the Swift programming language (Wilde et al., 2011).

The work described here was intended to develop a proof of concept,
together with a test-bed implementation. Now that the concept has been
proved and a test-bed implemented, we finish by describing how we see
this work developing in the future. One important thing to note is that al-
though this report is focused on astronomical applications and Sections 5
and 6 are devoted to Casa and ParselTongue specifically, the problem we
address is of general interest to the field of scientific programming. Any en-
vironment where analysis pipelines are incrementally refined, data-sets are
large, and computation is expensive and time-consuming could potentially
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benefit from the methods and ideas outlined here, and one important task
we intend to undertake in the future is to publish a paper to bring this work
and its potential benefits to the attention of a wider community.

2 Pipelines, graphs, and functional programs

We consider the case where an astronomer is developing a pipeline similar
in spirit to the fragment shown in Algorithm 1.

Algorithm 1: Pipeline algorithm with side effects
fn � "datafile";
data � read_data(fn, 1);
munge_data(vis=data, opcode="CAL", p=0.7);
restrain_data(vis=data, threshold=0.4);
plots � make_plots(data, b)

(The syntax is fictional, as are the functions invoked, but both are mod-
eled on the style of Casa and ParselTongue.) The astronomer then decides
to try the pipeline again, with a different parameter for the ‘threshold’ pa-
rameter in the ‘restrain_data’ procedure, as shown in Algorithm 2.

Algorithm 2: Revised pipeline algorithm with side effects
fn � "datafile";
data � read_data(fn, 1);
munge_data(vis=data, opcode="CAL", p=0.7);
restrain_data(vis=data, threshold=0.5);
plots � make_plots(data, b)

All the steps before the call to ‘restrain_data’ are unchanged, and our
goal is to develop an environment in which this is (automatically) recog-
nized and old values are transparently cached and reused where appropri-
ate. However, the above examples illustrate one of the pitfalls, shared by
Casa and ParselTongue, that immediately confronts any attempt to do this:
functions change the value of the arguments they are given.

As analysts of programs, we might hope for a notation in which inputs
and outputs to functions are distinguished, and inputs are never changed.
With a straightforward adaptation of the notation we could then rewrite the
two programs to be compared as shown in Algorithms 3 and 4.

Algorithm 3: Original pipeline algorithm with return values
fn � "datafile";
data � read_data(fn, 1);
data � munge_data(vis=data, opcode="CAL", p=0.7);
data � restrain_data(vis=data, threshold=0.4);
plots � make_plots(data, b)
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Algorithm 4: Modified pipeline algorithm with return values
data � read_data(fn, 1);
data � munge_data(vis=data, opcode="CAL", p=0.7);
data � restrain_data(vis=data, threshold=0.5);
plots � make_plots(data, b)

We should note that Casa and ParselTongue have the conventions they
have for excellent reasons: astronomical data-sets can be large, and it is
much cheaper and simpler to modify them in place than it is to make a new
copy with each operation applied. That is unless there is a way to make
copies cheap: Section 5 will describe exactly this, by using a version of Casa
on top of the ZFS file system to copy only the parts of the data set that
are changed. This still leaves a trade-off to be made between the cost of
recomputing data and the cost of storing it. In some case it may be more
economical to recompute some intermediates; we can envisage that a cost-
function could be defined which allows this trade-off to be specified.

Note that Algorithms 3 and 4 still describe imperative programs. The
value of the variable ‘data’ still changes as we go through the program, so
that we cannot identify the variable name with any fixed data set. In many
so-called functional programming languages it is not possible to reassign
variables, following a precedent set by the Id programming language Arvind
et al., 1978; Algorithm 5 shows how Algorithm 3 might be written in this
style.

Algorithm 5: Original pipeline algorithm in single-assignment form
fn � "datafile";
data0 � read_data(fn, 1);
data1 � munge_data(vis=data0, opcode="CAL", p=0.7);
data2 � restrain_data(vis=data1, threshold=0.4);
plots � make_plots(data2, b)

This style has advantages. Every variable has a single unambiguous
definiton, and so it is possible to reorder the evaluations so that compu-
tations can be performed, potentially in parallel, as soon as their inputs are
available. The Swift parallel scripting language Wilde et al., 2011 is based
on precisely this insight, and Section 6 will describe a version of Parsel-
Tongue built to use this language.

However, developing and altering a script written in the style of Algo-
rithm 5 is not an inviting prospect. In practice programmers in functional
languages have a variety of idioms to draw on to avoid writing programs in
quite this style. The work described in Sections 3 and 4 was implemented
in the purely functional language Haskell (Peyton Jones et al., 2003), and it
proved to be a generally pleasant experience. But since we do not propose
that astronomers should be expected to master functional programming,
we assume instead a middle ground, where inputs and outputs are clearly
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Figure 1: Inferring relations between variable uses from the syntax tree

identified in the syntax, but reassignment of variables is permitted.
In the following sections (Sections 3 and 4) we describe some tools we

have developed to analyze a language in that spirit, drawing particularly on
the literature around compiler development (see, for example, Appel, 1997;
Appel, 1998a). The language itself is a toy language invented for this work,
since have to supply a full parser and syntax tree tools for any language
we process, and since we are only really concerned with basic conditionals,
loops, assignments and function calls it is simpler to define a language that
only supports these. Despite its limitations this language is adequate to
describe typical pipeline scripts, and after processing to identify reusable
data products the resulting abridged script can be exported to either of the
back-ends we consider later.

3 Syntax-based approaches

Following pioneering work by Chawathe et al. (1996), a series of papers has
sought to track tree and graph based differences in database schemas and
ontologies (Eder and Wiggisser, 2006; Eder and Wiggisser, 2007) as well as
the text of computer programs (Fluri et al., 2007).

However, differences in the text between two programs is not sufficient
to know which values are the same in both and what needs to be recom-
puted. To calculate this, we need to also track the uses of each variable
definition, bearing in mind that variables (in non-functional languages) can
be redefined. The technique of computing use-def chains is well-known in
the compiler literature (Aho et al., 1986; Harrold et al., 1993) and addresses
precisely this problem.

To build a recalculation calculator based on this approach, we take two
programs, which we assume to be variants of each other, we compute the
syntax tree for each. We then calculate the difference between the syntax
trees, using the method of Fluri et al. (2007). For each syntax tree we use
standard dataflow algorithms to calculate the usage of each definition, and
then we can combine the tree differences with this to calculate an inferred
change in the resulting dataflow, as depicted graphically in Figure 1.

A program was successfully developed that performed this analysis on
programs in our toy language, but this approach was ultimately rejected in
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favour of the graph partition idea described in the next section.

4 Graph-partitioning approaches

As remarked above, the ability to reassign variables in a conventional ‘im-
perative’ programming language complicates the analysis of programs writ-
ten in them – the dataflow analysis performed in Section 3 above is largely
concerned with disambiguating variable assignments.

By contrast, programs written in functional programming languages,
where each variable can only be assigned to once, are considerably more
tractable to analysis. The disadvantage of functional programming lan-
guages is that they require programmers to get used to a quite different
way of organizing their code, and we do not want to put any unnecessary
stumbling blocks in the way of programmers that could discourage take up
of our tools.

Fortunately, we can achieve many of the benefits of functional program-
ming in an imperative setting by using an intermediate language (internal
to the analysis stage and not exposed to the user) with single static assign-
ment (SSA). In SSA form, as the name suggests, each variable is assigned
to once in the program text; each variable (say, d) in the original program
is replaced by distinct variables (d1, d2,. . . , dn) where necessary to preserve
this single-assignment property. An important point to note is that when
the program is in SSA form, we can think of it as a graph with definitions
as the nodes, and function calls arguments, if they are variables, as edges
to linking to the nodes where they are defined. Once this graph has been
constructed, the variable names become annotations – all the information
in the program is contained in the graph.

Following Cytron et al. (1991)’s work on an efficient algorithm to com-
pute SSA form for arbitrary programs it became a popular form of analysis
in compiler development generally (Appel, 1998a; Appel, 1998b). For our
purposes the key paper is Alpern et al. (1988) (which actually predates
Cytron et al.’s work) that shows how to use SSA form of a program to infer
equality of variables within a program. Their method involves constructing
a further graph, the ‘value graph’, from the SSA form of the program. It
is then straightforward to partition the value graph to identify equivalent
nodes, which correspond to equivalent variables.

Calculating equivalent variables within a single program is valuable for
a conventional compiler. What we want, however, is to calculate equal-
ity of variables across different programs, but this turns out to be a fairly
straightforward extension of Alpern et al.’s idea: we can simply develop a
global value graph for all the programs being considered (keeping track of
which nodes correspond to which programs) and apply the same analysis,
as summarized in Algorithm 6.
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Algorithm 6: Identifying equal variables
value_graph = ;;
for f 2 program_files do

ast generate_abstract_syntax(f);
cfg generate_control_flow_graph(ast);
domF calculate_dominance_frontiers(cfg);
ssa calculate_SSA_form(cfg, domF);
valG calculate_value_graph(valG);
value_graph value_graph [ valG;

end
partition global value graph;
filter out non-variables from partitions

This global analysis has been successfully implement with the toy lan-
guage, and the (Haskell) code is in the repository that accompanies this
document. Having an algorithm is an important part of our project, but it
also needs to be applied in the context of real astronomical software, and
the following two sections discuss that.

5 Combining with Casa

As we remarked in Section 2, the first thing we need to begin analyzing
programs is to be clear about the inputs and outputs to functions. As we
also noted, this is often not encoded in the syntax of scientific programming
tools, and Casa (NRAO Casa Webpage) is no exception. Casa also suffers
from another common phenomenon which is problematic for our purposes,
in that its datasets are stored as ‘measurement sets’, which are effectively
large binary objects that are opaque at the operating system level. (Tech-
nically a measurement set is a directory in the Unix environment, but its
contents are opaque binary formatted files.)

Internally the measurement set is made up of a number of tables, and
it is often the case that a procedure will modify one table, or a few tables,
while leaving the others constant. This means that changes to the mea-
surement set are localized on disk. This insight means that while it would
be impractical to copy the whole measurement set for every operation, it
is possible to make copies if the commonalities between the copies can be
identified and the commonality exploited.

Exactly this is possible with the Zettabyte File System (ZFS), originally
developed for Solaris but now well-supported under Linux (Bonwick and
Moore, 2008), which supports a (block-based) copy-on-write mechanism
for this purpose. With this in hand, we can consider writing scripts in which
the role of the ‘data’ variable in the scripts of Section 2 is played by the
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Figure 2: Turning Casa scripts into execution graphs.

measurement set itself. Doing so also means that the problem of storing the
various intermediate values of the variable is trivially solved.

That leaves the problem that the base language for Casa is Python (van
Rossum, 1995), a fully-fledged programming language, and that the pro-
cedures in Casa do not distinguish inputs and outputs in their syntax. An
example of a Python Casa script is shown in Appendix A.

This problem has been addressed by the ‘recipe’ program included in the
repository accompanying this program. It uses Python’s reflectional abili-
ties, and some additional information about the nature of the parameters to
specific procedures, to intercept a program and instead of simply running it,
to generate a SSA-style graph of how its execution, including renaming all
the intermediate data products with unique names, as shown in Figure 2.
These graphs are exported in the ‘dot’ file format of the GraphViz package
(Gansner and North, 2000) for further analysis. The latest release includes
a mechanism to execute such a graph, to look for commonalities in scripts
by searching graphs for isomorphisms, as shown in Figure 3 or to export the
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Figure 3: Comparing execution graphs from Casa scripts.

graph as a script. The expectation is that this code will be integrated with
the Haskell code implementing the graph partition algorithm of Section 4
before the end of the Hilado project, at which point we will have a tool
that is suitable for scientists to try out. The ultimate goal, as summarized in
Figure 4, is for this process to run transparently, with the user submitting a
script and getting a set of data products as output.

6 Combining with ParselTongue

ParselTongue (Kettenis et al., 2006) is a Python interface to the Astronom-
ical Image Processing System (AIPS) (Wells, 1985). It also keeps data in
tables embedded in files that are outwardly monolithic and opaque, but un-
like Casa it has an internal versioning scheme, whereby each table has a
current version number and old versions of tables are still accessible if ex-
plicitly requested. This means that we do not have to provide a mechanism
to store reusable data products, but it also means we have to be able to do
the bookkeeping to identify them.

The approach we have used here is to extend the Swift scripting lan-
guage (Wilde et al., 2011) to support ParselTongue procedures (which are
in turn wrappers around AIPS’s own concept of ‘tasks’). Swift is a single-
assignment language, so using it on top of ParselTongue is formally equiva-
lent to the execution graph in the previous section and the SSA-graph rep-
resentation of the program in Section 4. A working example of a pipeline

8



!"#$%&'$()*

+#'()#%,-.(-#

&'$()*%/0

123#'*%&*4$#

15*)5*%6 15*)5*%7 15*)5*%888

9-)5*%/:*:"#*%6

9-)5*%/:*:"#*%7

9-)5*%/:*:"#*%;

Figure 4: Transparent execution of Casa scripts with object cache.

script written using the Swiftified version of ParselTongue is included in the
repository.

To combine this approach with the analysis described in Section 4 we
would either need to adjust the tools to use the Swift language, or do the
analysis on our toy language (possibly somewhat extended) and export the
resulting graph as a piece of Swift syntax. While a Swift parse in Haskell has
already been developed as part of this project, the second option is likely to
be a quicker route to a fully functional prototype for scientific users.

7 Future directions

The approaches we have described in this report are all unified around
the concept of the SSA form of programs and the corresponding execution
graph. We have running code for a Swiftified ParselTongue, as well as for
an execution engine (and commonality detector) for Casa and a complete
equivalence detection engine for our toy language in Haskell.

What we need, and what we propose to implement in the immediate fu-
ture, is to link the two execution frameworks to the Haskell analysis to have
a complete system which can be made available to end-users for feedback
and testing which would then inform further development.

Beyond that, we intend to write up the ideas sketched here in a more
systematic form for publication in a refereed journal – the problem we have
been addressing is one that is common to many fields of scientific com-
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puting, it is becoming more rather than less urgent as datasets continue to
grow, and our techniques, if not necessarily our code, could be applied quite
generally.
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Appendices

A Casa code

Below we show a listing of an example Casa pipeline, that can be processed
using the tools described in Section 5.

Listing 1: Example Casa pipeline language
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Wells, D.C. (1985). “NRAOâĂŹs Astronomical Image Processing System
(AIPS)”. English. In: Data Analysis in Astronomy. Ed. by V.Di GesÃź, L.
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