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2 Short description 
 

The calibration of the visibilities obtained by modern radio astronomy interferometers, such as 
LOFAR, have been a very intensive computational task, increasingly so for future instruments 
currently being planned such as SKA.  Any gains in computational efficiency and performance 
of the calibration computation, would lead to improvements in both scientific throughput and 
quality, the latter by allowing the study of different scenarios. 

Alternating Direction Implicit (ADI) methods provide a computationally efficient way to solve for 
antenna based gains in full polarization. A modification of the algorithms, which has been 
nicknamed StEFCal (Statistically Efficient and Fast Calibration) by O.Smirnov and others (not 
by the authors) has proved very efficient with respect to the traditional solver algorithms of 
radio astronomy ([1]).  Salvini and Wijnholds showed that the algorithm is statistically efficient 
in low-SNR scenarios, which makes this approach particularly suitable for the calibration of 
large radio astronomical arrays like the Square Kilometre Array (SKA). This also led to the 
name Statistically Efficient and Fast Calibration (StEFCal). Stefcal was also shown to be 
extremely fast for non-polarised data, because of its scaling (proportional to the number of 
data points) and data access pattern. 

This paper summarises the efforts carried out to 

1. Extend the algorithm to cover the full polarization case.  This has been presented and 
published by Salvini and Wijnholds ([2]). 

2. Extend the algorithm, to multi-frequency and multi-snapshots calibration. 

3. Extend the algorithm to BDA (Baseline Dependent Averagning): this is particularly 
important for SKA in order to to reduce the computational load. 

4. Introduce StEFCal into the LOFAR pipeline (by T.J.Dijkema at ASTRON). 

5. Introduce StefCAL as part of CASACore (Van Diepen and Salvini). 

It should be noticed that StEFCal will be part of the software suite(s) for SKA both to calibrate 
data within the science production pipeline and to carry out antenna calibration for low 
frequency aperture arrays. 

 

3   Algorithm Development 
The extension of StEFCal to the fully polarised case was presented at the URSI plenary 
conference and then published.  It is a fully refereed paper. 

Polarized StEFCal is being used now within the new LOFAR pipeline DPPP (see below) and 
routinely within MeqTrees. 

Salvini and Dijkema have also studied the use of StEFCal for the polynomial approximation to 
the complex gains over a range of snapshots., in order to reduce the effects of noise in the 
calibration process.  Preliminary results showed the potential of the approach. 
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The polynomial (or expansion on basis functions) approach is being studied in conjunction 
with SKA for Baseline Dependent Averaging (BDA).  Basically, BDA would allow considerable 
savings in computational efforts by averaging out the visibilities of specific baselines over 
periods longer than the standard radio interferometer dump time according to baseline 
lengths.  The basic dump time is dictated by the longest baselines, although the majority of 
baselines are longer than them and their visibilities could be integrated for longer times. BDA 
could result in very considerable savings in bandwidth and computational effort (up to a factor 
10?).  Current calibration schemes are very slow and computationally intensive. 

It should also be noticed that using StEFCal for SKA would make calibration computationally 
far cheaper than other tasks within the processing pipelines. Relative computational costs are 
being studied and estimated within SKA.  It would be possible therefore to dedicate relatively 
low computational resources to calibration while dedicating most of resources (perhaps GPUs, 
other many-cores, etc) to other more computationally intensive tasks such as gridding, FFTs, 
etc.   

 

4 LOFAR (T.J.Dijkema) 
Currently, LOFAR pipelines use StEFCal, as implemented in DPPP (default preprocessing 
pipelines). Several options have been added to StEFCal, which have been named after the 
equivalent option in comparable packages that use different solvers (NRAO casa, BBS).  
 

solint find a constant solution for every x time slots, use every time slot as a separate 
data sample 

mode full jones, diagonal (solve for xx / yy polarization only) or 'commonscalarphase' 
(solve for xx  / yy, force unit amplitude of the solutions) 

detectstalling a history of convergence is analyzed as part of stefcal. If no improvement is 
achieved for a number of iterations, a 'stall' is detected and the iteration is 
stopped. The solution on this time slot will later be marked as suboptimal, and 
possibly the data will be flagged. 

 

To make solving with StEFCal possible, significant effort had to be put into efficiently 
simulating visibilities from a sky model. This prediction is multithreaded, and can optionally 
apply the LOFAR beam model. 

Astronomers are currently using the DPPP implementation of stefcal, reports are that it 
achieves speedups of at least a factor 10, and the solutions are at least as good as those 
achieved by BBS. 

 

5 Casacore (Van Diepen) 
Work is underway to provide a StEFCal interface to Casacore.  That will make StEFCal 
accessible to those researchers using CASA and Casacore. 
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ABSTRACT

Context. Modern radio astronomical arrays have (or will have) more than one order of magnitude more receivers than classical syn-
thesis arrays, such as the VLA and the WSRT. This makes gain calibration a computationally demanding task. Several alternating
direction implicit (ADI) approaches have therefore been proposed that reduce numerical complexity for this task fromO(P3) toO(P2),
where P is the number of receive paths to be calibrated
Aims. We present an ADI method, show that it converges to the optimal solution, and assess its numerical, computational and statis-
tical performance. We also discuss its suitability for application in self-calibration and report on its successful application in LOFAR
standard pipelines.
Methods. Convergence is proved by rigorous mathematical analysis using a contraction mapping. Its numerical, algorithmic, and
statistical performance, as well as its suitability for application in self-calibration, are assessed using simulations.
Results. Our simulations confirm the O(P2) complexity and excellent numerical and computational properties of the algorithm. They
also confirm that the algorithm performs at or close to the Cramer-Rao bound (CRB, lower bound on the variance of estimated pa-
rameters). We find that the algorithm is suitable for application in self-calibration and discuss how it can be included. We demonstrate
an order-of-magnitude speed improvement in calibration over traditional methods on actual LOFAR data.
Conclusions. In this paper, we demonstrate that ADI methods are a valid and computationally more efficient alternative to traditional
gain calibration methods and we report on its successful application in a number of actual data reduction pipelines.

Key words. instrumentation: interferometers – methods: numerical – methods: statistical – techniques: interferometric

1. Introduction

Antenna-based gain calibration is a key step in the data reduction
pipeline of any radio telescope. A commonly used method of
estimating these antenna-based gains and possible other param-
eters in a (self-)calibration process is the Levenberg-Marquardt
(LM) nonlinear least squares solver. Theoretically, the LM al-
gorithm has at least O(N3) complexity, where N is the number
of free parameters to be estimated. The LM solver has proved
its value in self-calibration processes, but it is becoming a lim-
iting factor in (near) real-time pipelines for modern telescopes,
such as the Low Frequency Array (LOFAR, de Vos et al. 2009;
Van Haarlem et al. 2013) and the Murchison Widefield Array
(MWA, Lonsdale et al. 2009; Bowman et al. 2013), owing to
its cubic scaling with the number of receivers. The situation
will only become worse for the Square Kilometre Array (SKA,
Dewdney et al. 2009, 2013).

This has motivated researchers to search for faster solvers
with better scalability for antenna based gain calibration.
Hamaker (2000) has already noted that solving for the gain of
one specific receive path, assuming that all other receive paths
are already calibrated while iterating over all antennas, could
potentially be a fast way to solve for antenna-based gains in full
polarization. This leads to an alternating direction implicit (ADI)
method, which is used in the MWA real-time system for tile
based calibration (Mitchell et al. 2008). In the MWA pipeline,
the gain estimates found for a given timeslice are used as initial

estimates for the next timeslice. This makes a single iteration
sufficient for achieving the required calibration accuracy. This
cleverly exploits the electronic stability of the MWA system.
Mitchell et al. (2008) also proposed to reduce the noise on the
estimates by using a weighted average between the current and
previous gain estimates.

Salvini et al. (2011) showed that averaging the odd and even
iterations not only reduces the noise on the estimates, but also
considerably increases the rate of convergence and the robust-
ness of the method. ADI methods have O(P2) complexity where
P is the number of receive paths to be calibrated. Since the num-
ber of visibilities also scales with P2, these algorithms scale lin-
early with the number of data points and therefore have the low-
est possible computational complexity for algorithms exploiting
all available information.

Iterative algorithms, such as the ADI method presented in
this paper, can be sensitive to the choice of initial estimates
or exhibit slow convergence. In Sect. 4 we therefore provide a
rigorous convergence analysis. This gives a clear view of the
algorithm’s effectiveness and its potential limitations. We also
discuss why these limitations are unlikely to hamper proper
performance of the algorithm in practical radio astronomical
applications, as by its actual use.

Hamaker (2000), Mitchell et al. (2008), and Salvini et al.
(2011) have derived the basic ADI iteration from the unweighted
least squares cost function. In practice, weighted least squares
methods are known to provide more accurate estimates if the
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signal-to-noise ratio (S/N) varies widely among data points. In
this paper, we therefore start our derivation from the weighted
least squares cost function and show that radio astronomical ar-
rays can usually exploit the unweighted LS method.

In Sect. 5, we compare the statistics of the gain estimates
produced by the algorithm in Monte Carlo simulations with the
Cramer-Rao bound (CRB). The CRB is the theoretical lower
bound on the covariance of the estimated parameters obtained
by an ideal unbiased estimator. The results indicate that the al-
gorithm performs at the CRB when the covariance matched and
unweighted least squares cost functions coincide (as expected)
while performing very close to the CRB in most realistic sce-
narios. In the radio astronomical community, the ADI method
presented in this paper is now usually referred to as StefCal, a
name coined in jest by our colleagues Oleg Smirnov and Ilse
van Bemmel. In view of its (close to) statistically efficient perfor-
mance and high computational efficiency, we adapted the name
to StEFCal, an admittedly rather contrived acronym for “statis-
tically efficient and fast calibration”.

StEFCal provides a considerable computational advantage
over algorithms derived from the weighted least squares cost
function, which usually scale with P3 (Ng & See 1996; Boonstra
& van der Veen 2003; Wijnholds & van der Veen 2009). In
Sect. 5 we also consider the computational performance of
StEFCal, highlighting its low computational complexity as well
as its efficiency, its very small memory footprint, and scalability
with problem size.

In Sect. 6, we briefly discuss the extension of StEFCal to
full polarization calibration. This is now used routinely within
MEqTrees (Noordam & Smirnov 2010) and the LOFAR stan-
dard preprocessing pipeline (Salvini & Wijnholds 2014a). Our
simulations in Sect. 5 also show that StEFCal is suitable for in-
tegration in self-calibration approaches that rely on iterative re-
finement of the source model. In Sect. 7, we show that StEFCal
can be easily integrated in an actual system by reporting on the
successful integration of StEFCal in a calibration pipeline for a
LOFAR subsystem.

We conclude our paper in Sect. 8 by discussing possible
alternative variants of the algorithm and possibilities for inte-
grating StEFCal as a building block in other calibration algo-
rithms, including algorithms dealing with direction-dependent
gains, such as SAGECal (Yatawatta et al. 2009; Kazemi et al.
2011) and the differential gains method proposed by Smirnov
(2011), corrupted or missing data values and polarization. For
convenience of the reader, Table 1 summarizes the notational
conventions and frequently used symbols in this paper.

2. Problem statement

2.1. Measurement equation

The radio astronomical system to be calibrated can have
many different architectures. For example, antenna-based gain
calibration can be applied to a synthesis array of dishes in in-
terferometers, such as the VLA or the WSRT, but also to a syn-
thesis array of stations in instruments, such as LOFAR or the
envisaged Low Frequency Aperture Array (LFAA) system for
the SKA (Dewdney et al. 2013). Antenna-based gain calibration
is also required within an aperture array station, where it be-
comes tile-based calibration in systems, such as the LOFAR high
band antenna system (Van Haarlem et al. 2013) or the MWA. In
this paper, we will therefore use generic terms, such as “receiv-
ing element”, “element” or “antenna” to denote an individual
element in a (synthesis) array instead of architecture-dependent

Table 1. Notation and frequently used symbols.

a scalar value
a vector a
A matrix A
A:,k kth column of the matrix A
diag (·) converts a vector into a diagonal matrix
⊙ Hadamard or element-wise product of matrices or

vectors
(·)∗ conjugation
(·)T transpose
(·)H Hermitian transpose
(·)[i] value at the ith iteration
E {A} expected value of A

R̂ array covariance matrix, diagonal set to zero
M model cov. matrix of observed scene, diagonal set

to zero
g vector of complex valued receiver path gains
G G = diag (g)
∆ ∆ = R̂ −GMGH

terms such as “dish”, “station” or “tile”. We will also use the
word “array” to refer to the system of elements to be calibrated
instead of specific terms such as “station array”, “synthesis ar-
ray” or “tile array”.

In this paper, we consider the scalar measurement equation
or data model. The ADI method can be extended to full polar-
ization as shown by Hamaker (2000), Mitchell et al. (2008) and
Salvini & Wijnholds (2014a,b), but this complicates the analy-
sis unnecessarily. In our analysis, we assume that the source and
noise signals are represented by complex valued samples that are
mutually and temporally independent and that can be modeled
as identically distributed Gaussian noise. We assume that these
signals are spectrally filtered such that the narrowband condi-
tion (Zatman 1998) holds, which ensures that time delays can be
represented by multiplication by phasors.

Besides allowing this representation of time delays, spec-
tral filtering is a crucial step in (ultra-)wide band systems like
modern radio telescopes for two other reasons. Firstly, it ensures
that the noise in each channel can be assumed to be white noise
regardless of bandpass fluctuations of the instrument or the in-
herent power spectrum of the observed sources. Secondly, ob-
servations using an increasingly larger fractional bandwidth are
more likely to be affected by human-generated radio frequency
interference (RFI). Most of this RFI can be detected and flagged
(Boonstra 2005; Offringa 2012; Offringa et al. 2013). If the chan-
nel width matches the bandwidth of the RFI signals (typically a
few kHz), the S/N of the RFI in the occupied channel is maxi-
mized, thereby facilitating detection. As an additional bonus, the
amount of spectrum that is flagged is minimized in this case. RFI
that escapes detection can cause outliers in the measured data
that do not fit a Gaussian noise model. In such cases, an appropri-
ate weighting of the data samples can help to improve robustness
to such outliers (Kazemi & Yatawatta 2013). In Sect. 8 we briefly
discuss how such weighting can be incorporated in StEFCal, al-
though at the expense of some computational efficiency.

The direction-independent gain of the pth receive path of an
array consisting of P elements can be represented by the com-
plex valued scalar gp. The output signal of the pth element, re-
ceiving signals from Q sources, as a function of time t can be
described by

xp(t) = gp

Q∑

q=1

ap,qsq(t) + np(t), (1)

A97, page 2 of 14
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where ap,q is the pth antenna’s response to the qth source, sq(t) is
the source signal, and np(t) represents the noise on the measure-
ment. Since we assume that the narrowband condition holds, the
factors ap,q are the geometry-dependent phase terms that result
in the familiar Fourier-transform relationship between the source
structure and the measured visibilities (Thompson et al. 2004).

We can stack the element-indexed quantities in vectors
of length P: the output signals of the individual sensors
in x(t) = [x1(t), · · · , xP(t)]T; the complex valued gains in
g =

[
g1, · · · , gP

]T; the array response vector to the qth

source as aq =
[
a1,q, · · · , aP,q

]T
; finally, the noise vector as

n(t) = [n1(t), · · · , nP(t)]T.
With these definitions, we can describe the array signal

vector as

x(t) = g ⊙
Q∑

q=1

aqsq(t) + n(t). (2)

Defining the P × P diagonal matrix G = diag(g), the P × Q
array response matrix A =

[
a1, · · · , aQ

]
, and the Q × 1 source

signal vector s(t) =
[
sq(t), · · · , sQ(t)

]T
, we can reformulate (2)

in a convenient matrix form:

x(t) = GAs(t) + n(t). (3)

Defining X = [x(T ), · · · , x(KT )], where K is the number of sam-
ples and KT defines the overall measurement duration, we can
then estimate the array covariance matrix, often referred to as
visibility matrix or matrix of visibilities, by

R̂ =
1
K

XXH. (4)

The model for the array covariance matrix follows from

R = E
{

1
K

XXH
}
= GAΣsAHGH + Σn, (5)

where Σs = E
{
s(t)sH(t)

}
is the covariance matrix of the source

signals, and Σn = E
{
n (t) nH(t)

}
is the noise covariance ma-

trix. In (5), we have assumed that the source and noise signals
are mutually uncorrelated. We also assume that the noise sig-
nals on the individual sensors are uncorrelated, such that the
noise covariance matrix is diagonal, i.e., Σn = diag(σn). In
Sect. 8, we indicate how the algorithm can deal with more com-
plicated noise models. For convenience of notation, we introduce
R0 = AΣsAH, so that we can write (5) as

R = GR0GH + Σn. (6)

2.2. Optimization problem

The antenna based gains and phases can be calibrated by a
measurement in which the source structure is known, so we
can predict model visibilities R0. Since the receiver path noise
powers σn are usually not known, the calibration problem is
described by
{
g, σ̂n

}
= argmin

g,σn

∥∥∥∥WH
(
R̂ −GR0GH − Σn

)
W

∥∥∥∥
2

F
. (7)

This equation describes our problem as a weighted least squares
estimation problem. This allows us to apply covariance matched
weighting by taking W = R−1/2, leading to estimates that are
asymptotically, for a large number of samples, equivalent to

maximum likelihood estimates (Ottersten et al. 1998). However,
in radio astronomy, sources are typically much weaker than the
noise, i.e., the S/N per sample is usually very low. Exceptions
to this statement are observations of the brightest sources on the
sky, such as Cas A, Cyg A, and the Sun, in which self-noise
becomes a significant issue (Kulkarni 1989; Wijnholds 2010).
Besides such exceptional cases, the model covariance matrix can
be approximated by R ≈ Σn. Since many radio astronomical in-
struments are arrays of identical elements, whereby Σn ≈ σnI,
we are justified in using W = I. In the Monte Carlo simulations
presented in Sect. 5.3, we demonstrate that violating these as-
sumptions only leads to small deviations from the CRB, even in
extreme situations unlikely to occur in reality.

In many practical cases, we have an incomplete model of the
observed field, and we employ the best available model M ≈ R0
which, for example, only includes the brightest sources. In our
simulations, we consider both complete and incomplete infor-
mation on the observed field. Another practical matter is that the
autocorrelations are dominated by the noise power of the array
elements. Since accurate modeling of the diagonal of the array
covariance matrix involves estimating the noise power of each
individual element, we are forced to estimate the antenna-based
gains using the crosscorrelations followed by estimation of the
noise powers using the diagonal elements. For the gain estima-
tion step, it is therefore convenient to set the diagonal entries
of R̂ and M to zero. This assumption is made throughout this
paper, thus ignoring Σn. This simplifies the estimation problem
described in (7) to

g = argmin
g

∥∥∥∥R̂ −GMGH
∥∥∥∥

2

F
= argmin

g
∥∆∥2F (8)

where we have introduced ∆ = R̂ − GMGH for brevity of
notation.

3. The algorithm

Using an ADI approach, we first solve for GH holding G con-
stant, then for G holding GH constant. Since ∆ is Hermitian, the
two steps are equivalent and the iteration consists of only the
following step:

G[i] = argmin
G
∥R̂ −G[i−1]MGH∥F . (9)

Since ∥x∥F = ∥x∥2 for any vector x, and setting

Z[i] = G[i]M (10)

we can write

∥∆∥F =
∥∥∥∥R̂ − ZGH

∥∥∥∥
F
=

√√√ P∑

p=1

∥∥∥∥R̂:,p − Z:,pg∗p

∥∥∥∥
2

2
. (11)

Equation (11) shows that the complex gains gp are decoupled
and that each iteration consists of solving P independent P ×
1 linear least squares problems. Using, for example, the normal
equation method we readily obtain:

g[i]
p =

⎧⎪⎪⎨
⎪⎪⎩

(Z[i−1]
:,p )H · R̂:,p

(Z[i−1]
:,p )H · Z[i−1]

:,p

⎫⎪⎪⎬
⎪⎪⎭

∗

=
R̂H

:,p · Z[i−1]
:,p

(Z[i−1]
:,p )H · Z[i−1]

:,p

, (12)

which is the basic ADI iteration.
In practice, the basic iteration may converge very slowly. For

example, in the case of the sky model used in Sect. 5, it does
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not converge at all, bouncing to and fro between two vectors g.
We resolved this issue by replacing the gain solution of each
even iteration by the average of the current gain solution and the
gain solution of the previous odd iteration. This simple process
makes the iteration both very fast and very robust. This is the
basic variant of the StEFCal algorithm, which is described here
as Algorithm 1. Its convergence properties are studied in detail
in the next section, while its numerical, computational, and sta-
tistical performance are discussed in Sect. 5.

Algorithm 1 Algorithm StEFCal
Initiate G[0]; G[0] = I is adequate in most cases
for i = 1, 2, · · · , imax do

for p = 1, 2, · · · , P do
z← G[i−1] ·M:,p ≡ g[i−1] ⊙M:,p

gp ← (R̂H
:,p · z)/(zH · z)

end for
if mod2(i) = 0 then

if ∥g[i] − g[i−1]∥F/∥g[i]∥F ≤ τ then
Convergence reached

else
G[i] ← (G[i] + G[i−1])/2

end if
end if

end for

We want to stress a few important points

– There are no parallel dependencies in the inner loop (the
dependency on z is trivially resolved by employing a lo-
cal vector z on each computational unit or core, or by us-
ing the individual elements of z at once without needing to
store the vector, although at the cost of potentially lower
performance).

– All data are accessed through unit strides (contiguous mem-
ory locations).

– The memory footprint is very small. Basically, only one ex-
tra P-vector is required (for requirements of z see above)
besides the visibility matrices.

Thus, the algorithm can be readily implemented on many-core
architectures (such as GPUs, Intel Xeon Phi, etc.), as well as on
multiple cores, for example by employing OpenMP. Codes and
algorithms are in a very advanced development stage and are
available on request.

The gain estimation problem has an inherent phase ambigu-
ity. In this paper, we choose, entirely arbitrarily, to use the first
receiver as phase reference. This constraint can be imposed ei-
ther within each iteration at the cost of O(P) operations or at the
end of the computation. In practical terms, we did not find any
difference in rate of convergence and results between these two
options.

We now look at the algorithm in terms of the gradient with
respect to the real and imaginary parts of the complex gains of
the function

g = argmin
g
∥∆∥2F = argmin

g
Tr

(
∆∆H

)
. (13)

At a minimum, the partial derivatives with respect to the real and
imaginary parts of the complex gains must all be zero. Hence,

∂

∂ Re(gp)
Tr

(
∆∆H

)
= Tr

[
∂ ∆∆H

∂ Re(gp)

]
=

= −Tr
[(

EpMGH +GMEp

)
∆H + c.c.

]

= −2Re
[
Tr

(
EpMGH∆H

)
+ Tr

(
GMEp∆

H
)]

= −4Re
{
Tr

(
∆EpZH

)}

= −4Re
[
ZH

:,p∆:,p

]

= −4Re
[
ZH

:,p ·
(
R̂:,p − Z:,pg

∗
p

)]

= 0 (14)

where c.c. stands for complex conjugate and Ep denotes the
P × P elementary matrix, which only contains zeros except for
the (p, p)-element, which is unity. We used the properties of the
trace of a product of matrices; we used the Hermitian properties
of ∆, M, and Ep; and finally, we used Z:,p = (GM):,p. Likewise,
for the imaginary part of gp we obtain

∂Tr
(
∆∆H

)

∂ Im(gp)
= −4Im

[
ZH

:,p ·
(
R̂:,p − Z:,pg

∗
p

)]
= 0. (15)

Looking at (11), (14), and (15), and at Algorithm 1, we can see
that the termination condition in the algorithm implies zero gra-
dient as a function of the real and imaginary parts of all gp, for
p = 1, . . . , P, achieved through a process of local minimization
via a linear least squares method. Because the algorithm shows
very good convergence in all realistic cases studied, we can infer
that StEFCal does indeed produce gains that minimize ∆ in the
least squares sense.

Moreover, using Eqs. (14) and (15), we can obtain the com-
ponents of the gradient with respect to the real and imaginary
part of g at the ith iteration by

∇Re(gp) ∥∆∥2F = −4Re
[
z[i−1]H

p R̂:,p −
(
z[i−1]H

p z[i−1]
p

)
g[i−1]∗

p

]

∇Im(gp) ∥∆∥2F = −4Im
[
z[i−1]H

p R̂:,p −
(
z[i−1]H

p z[i−1]
p

)
g[i−1]∗

p

]

where we used the notation z[i−1]
p = Z[i−1]

:,p = g[i−1]⊙M:,p. The dot
products have already been computed to generate the new gain
estimate g[i]

p , so the components of the gradient can be generated
at virtually no cost.

4. Analysis of convergence

In this section we first introduce the concept of contraction map-
ping and then employ this concept to analyze the convergence
properties of the proposed algorithm. The special case of cali-
bration on a single point source shows that the algorithm con-
verges for all initial estimates except for initial estimates in the
null space of g. Finally, we study the general case of an arbitrary
source distribution, showing that convergence is achieved when
certain conditions on the observed scene and the initial estimate
are met. We discuss these conditions and argue that they are met
in practical situations. The convergence analysis presented be-
low considers convergence in the noise-free case. The effect of
measurement noise is studied in detail using Monte Carlo simu-
lations in Sect. 5.3.
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4.1. Condition for convergence

A contraction mapping on a complete metric spaceM with dis-
tance measure d is a function f :M→M with the property that
a real valued number µ < 1 exists such that for all x, y ∈M

d ( f (x) , f (y)) ≤ µd (x, y) . (16)

The Banach fixed point theorem states that the sequence of val-
ues resulting from iterative application of a contraction map-
ping converges to a fixed point (Palais 2007). This theorem can
be understood intuitively. We consider two arbitrary points in
a Euclidian space using the induced norm of their difference
to measure the distance between them. If a given operation is
a contraction mapping, applying that operation to both points
separately will produce two new points that are closer together.
Repeated application of the operation on the resulting points will
make the distance between each pair of new points shorter than
the previous pair. If we continue applying the operation long
enough, we can make this distance arbitrarily small, thus effec-
tively converging to a single point. If we can show that the full
iteration (two basic iteration as described by (12) and the aver-
aging step) is a contraction mapping, we can conclude that the
iterative application of the full iteration leads to a converging
sequence of values g[i].

Replacing R̂ with R = GMGH = ggH⊙M, the basic iteration
for a single element described by (12) reads as

g[i]
p =

(
g ⊙M:,p

)H (
g[i−1] ⊙M:,p

)

(
g[i−1] ⊙M:,p

)H (
g[i−1] ⊙M:,p

)gp. (17)

Introducing the weight vector wp =M∗
:,p ⊙M:,p, we can read the

products in the numerator and denominator as weighted inner
products and write the basic iteration as

g[i]
p =

〈
g[i−1], g

〉
wp〈

g[i−1], g[i−1]〉
wp

gp. (18)

The initial estimate g[i−1] can be written in terms of a scaling α of
the true gain values g and an error vector orthogonal to g (in the
usual Euclidean sense) ϵ, i.e., we may write g[i−1] = α (g + ϵ).
Substitution in (18) gives

g[i]
p =

1
α∗
⟨g + ϵ, g⟩wp

∥g + ϵ∥2wp

gp =
1
α∗
βpgp. (19)

This formulation gives interesting insight into the operation of
the basic iteration. If the initial estimate is purely a scaling of
the true value, βp = 1, and the algorithm only tries to adjust the
amplitude. If the initial estimate has a component that is orthog-
onal to the true gain vector, the algorithm tries to remove ϵ by
projecting the guessed gain vector on the true gain vector. The
impact of ϵ depends on the element being considered, because
the scene used for calibration may be such that the calculation
of βp involves geometry in a weighted Euclidean space.

Introducing the vector β =
[
β1, · · · , βP

]T, we can write the
full iteration for a single element as

g[i]
p =

1
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

〈
1
α∗ β ⊙ g, g

〉
wp

----- 1
α∗ β ⊙ g

-----2
wp

gp +
1
α∗
βpgp

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (20)

For the gain vector, the full iteration is described by

g[i+1] =
1
2

(
αβ̃ ⊙ g + 1

α∗
β ⊙ g

)
=

1
2

⎛
⎜⎜⎜⎜⎝
|α|2 β̃ + β
α∗

⎞
⎟⎟⎟⎟⎠ ⊙ g, (21)

where we defined β̃p = ⟨β ⊙ g, g⟩wp
/ ∥β ⊙ g∥2wp

(note the sim-
ilarity in form and hence interpretation as βp) and the vector

β̃ =
[
β̃1, · · · , β̃P

]T
for brevity of notation. Although not recog-

nizable in this equation, the initial estimate g[i−1] comes in via α,
β and β̃.

For convergence, we like to show that, if we have two distinct
initial estimates g[0]

1 and g[0]
2 , we have

------g[2]
1 − g

[2]
2

------ ≤
------g[0]

1 − g
[0]
2

------ , (22)

where we used the Euclidian norm (induced norm) as distance
measure in the linear space of potential gain vectors. Since we
are considering the change in Euclidian distance between these
two initial estimates, we can attribute the differential error vector
to one of the gains without loss of generality, and model the
initial estimates as g[0]

1 = α1 (g + ϵ) and g[0]
2 = α2g, leading to

------------
1
2

⎛
⎜⎜⎜⎜⎜⎝
|α1|2 β̃1 + β1

α∗1
− |α2|2 β̃2 + β2

α∗2

⎞
⎟⎟⎟⎟⎟⎠ ⊙ g

------------
≤ ∥α1 (g + ϵ) − α2g∥ .

(23)

Since ϵ = 0 for g[0]
2 , we have β2 = β̃2 = 1. This allows us to

simplify the lefthand side of (23) to

------------
1
2

⎛
⎜⎜⎜⎜⎜⎝
α∗2 |α1|2 β̃1 + α

∗
2β1 − α∗1 |α2|2 − α∗1
α∗1α

∗
2

⎞
⎟⎟⎟⎟⎟⎠ ⊙ g

------------
=

1
2

-----------
diag

(
α1β̃1 − α2 +

α∗2β1 − α∗1
α∗1α

∗
2

)
g

-----------

≤ 1
2
σmax

(
diag

(
α1β̃1 − α2 +

α∗2β1 − α∗1
α∗1α

∗
2

))
∥g∥ , (24)

where σmax(·) denotes the largest singular value of a matrix. For
a diagonal matrix D, such as that in (24), we have:

σ2
max (D) = λmax

(
DHD

)
= maxn

{
|dn|2

}
, (25)

where dn denotes the nth element on the main diagonal of D.
Squaring the left- and righthand sides of (22) and exploiting

the fact that ϵ ⊥ g, we require

1
4

∣∣∣∣∣∣α1β̃1,pmax − α2 +
α∗2β1,pmax − α∗1
α∗1α

∗
2

∣∣∣∣∣∣

2

≤ |α1 − α2|2 + |α1|2
∥ϵ∥2
∥g∥2

(26)

for convergence, where pmax is the value of p that maximizes the
lefthand side.

4.2. Convergence for single point source calibration

When the observed scene consists of a single point source, we
can assume M = R0 = 11H without loss of generality. The
weighted inner products in β and β̃ therefore reduce to the stan-
dard Euclidean inner product since wp = 1 for all p. Since the
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error vector ϵ is assumed to be perpendicular to g, (19) shows
that ϵ will be projected out in the first basic iteration. As a result,
we have βp = 1 for all p after the first iteration, which reduces
the condition for convergence in (26) to

1
4

∣∣∣∣∣∣α1 − α2 +
α∗2 − α∗1
α∗1α

∗
2

∣∣∣∣∣∣

2

≤ |α1 − α2|2 . (27)

Substitution of
∣∣∣∣∣∣α1 − α2 +

α∗2 − α∗1
α∗1α

∗
2

∣∣∣∣∣∣

2

≤
⎛
⎜⎜⎜⎜⎜⎝|α1 − α2| +

∣∣∣α∗2 − α∗1
∣∣∣

∣∣∣α∗1
∣∣∣
∣∣∣α∗2

∣∣∣

⎞
⎟⎟⎟⎟⎟⎠

2

= |α1 − α2|2 +
(2 |α1| |α2| + 1) |α1 − α2|2

|α1|2 |α2|2
(28)

in (27), followed by some algebraic manipulation, gives

2 |α1| |α2| + 1 ≤ 3 |α1|2 |α2|2 , (29)

which holds if |α1| |α2| ≥ 1. This may not be true for the initial
estimate provided to the algorithm, but as long as the initial es-
timate does not lie in the null space of g, this condition will be
met after the first full iteration, since 1

2 |1/α + α| ≥ 1 for all val-
ues α satisfying |α| ≥ 0. Equation (29) also shows that if |α1| and
|α2| are close to unity, i.e., if the estimates are close to the true
value, the rate of convergence becomes quite slow. Slow conver-
gence close to the true solution has indeed been observed in our
simulations.

Another interesting insight from this analysis lies in the dis-
tribution of consecutive estimates around the true value. Each
full iteration involves a gain estimate that scales the true gain
vector with |α| and a gain estimate scaling 1/ |α| with |α| moving
closer to unity in each full iteration. The algorithm thus gener-
ates two sequences of points that converge to the true value, one
from above and one from below.

4.3. Convergence in general

To assess the convergence in the general case of calibration on an
arbitrary scene, we first note that the condition for convergence
in (26) is tightest if either one of the terms on the righthand side
equals zero. We therefore analyze those two extreme cases. In
the first case, ϵ = 0, we have β1 = β̃1 = 1. This leads to the con-
dition expressed in (27), for which convergence was discussed
in the previous subsection.

In the second case α1 = α2 = α, making the first term of the
righthand side of (26) zero, such that the condition for conver-
gence holds if

1
4

∣∣∣∣∣α
(
β̃1,pmax − 1

)
+

1
α

(
β1,pmax − 1

)∣∣∣∣∣
2

≤ |α|2 ∥ϵ∥
2

∥g∥2
· (30)

Since βpmax is based on a weighted inner product instead of the
usual Euclidean inner product (as in the single point source
case), we cannot show that (30) holds in general. The signifi-
cance of this is that it is possible to construct cases for which
the algorithm fails. For example, when M:,p = 0 for some value
of p (this holds for all p in the case of an empty scene) or if, for
specific weights wp, ∥g + ϵ∥wp

→ 0, βpmax becomes very large.
In summary, we conclude that, to ensure convergence, the

following conditions should be met:

1. The inner product between the initial estimate and the true
value should be nonzero; i.e., the initial estimate should not
lie in the space orthogonal to the true value or be close to the
zero vector.
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Fig. 1. Positions of the first 200 (circles) and 100 (crosses) anten-
nas in the random configuration of 4000 antennas generated for the
simulations.

2. The observed scene should be such that γ in ⟨ϵ, g⟩wp
=

γ ∥ϵ∥wp
∥g∥wp

is small for all values of p. This ensures that
βpmax remains small. Physically, this means that the observed
scene should be suitable for a calibration measurement. For
example, it is not possible to do gain amplitude and phase
calibration on a homogeneously filled or empty scene.

The first criterion can usually be ensured by available knowledge
of the measurement system, either from precalibration or design.
The second criterion is a requirement for any calibration mea-
surement. We therefore conclude that the algorithm will work
in most practical situations. This conclusion was confirmed by
extensive testing in simulation, of which some examples will be
presented in the next section.

5. Simulations

In this section we show how the algorithm performs in terms of
numerical, computational, and statistical performance.

5.1. Numerical performance and practical convergence

We tested StEFCal with an extensive number of cases that cover
a wide range of simulated sky models, with varying numbers
and locations of receivers and levels of corruption and noise.
These simulations all supported the conclusions drawn from the
specific cases reported here.

The results shown here, unless otherwise indicated, employ
a simulated sky consisting of 1000 point sources with powers
exponentially distributed between 100 and 10−4 Jy (1 Jy equals
10−26 W/m2/Hz) randomly positioned in the sky. The array con-
figuration consists of up to 4000 antennas randomly distributed
over a circular range with a diameter of 160 m and minimum
separation of 1.5 m, corresponding to a Nyquist frequency of
100 MHz. Where a smaller number of antennas was required,
the upper left portion of the visibility matrix (associated with the
first P antennas) was used, as illustrated by the antenna layouts
in Fig. 1. For convenience of presentation, uncorrelated receiver
noise was not included in the example illustrated in this section.
The effect of noise is studied in more detail in Sect. 5.3.

The model visibility matrix was built for two cases:

Case 1: Incomplete sky model: only the 18 brightest sources (all
sources brighter than 1% of the brightest source) were in-
cluded in the model visibilities.
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Fig. 2. Scene as observed by a perfectly calibrated array. The sky model
contains 1000 sources but only the brightest are visible with this color
scale. The weakest sources are even drowned in the sidelobe response
of the brightest sources.
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Fig. 3. Observed sky: sky image as seen by the instrument prior to
calibration.

Case 2: Complete sky model: all 1000 sources were included.

Case 1 represents a typical situation in practical radio astronom-
ical calibration scenarios. For both cases, convergence to ma-
chine accuracy (10−15) and to a much looser tolerance (10−5)
was studied and compared to give an indication of the conver-
gence requirements in realistic cases.

Figure 2 shows the “exact” sky, i.e. the sky image as
viewed by the perfectly calibrated array. “Corrupted” skies were
obtained by perturbing the antenna-based gains with ampli-
tudes randomly distributed between 0.5 and 1.5 with unit mean
and phases randomly distributed between 0 and 2π radians.
The results for Case 1 are shown in Figs. 3 through 5, us-
ing P = 500 antennas and at a frequency of about 35.5 MHz.
Figure 3 shows the sky as imaged by the instrument prior to cal-
ibration. We ignored the autocorrelations of the measured visi-
bility matrix and the matrix of model visibilities. As discussed
in Sect. 8, it is straightforward to use StEFCal in scenarios with
more entries of the covariance matrix set to zero to flag specific
data values. This was studied, but not reported here for reasons
of brevity, and supports the conclusions drawn.

The images obtained after calibration are indistinguishable
from Fig. 2 at the resolution of the array, so they are not shown
here. The difference between the image after calibration and
the incomplete sky model (which includes just 18 sources for
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Fig. 4. Difference between the image after calibration and the model sky
containing only the 18 brightest sources.
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Fig. 5. Difference between the image after calibration on only the
18 brightest sources and the exact sky.

Table 2. Maximum difference between exact sky and image after cali-
bration to different tolerances.

max (skyexact – sky10−5 ) 3.2 × 10−8

max (skyexact – sky10−15 ) 1.3 × 10−15

max (sky10−5 – sky10−15 ) 3.2 × 10−8

Case 1) is more interesting and is shown in Fig. 4. This clearly
shows that the next brightest sources can be identified correctly
after calibration and subtraction of the 18 brightest sources.
Figure 5 shows the difference between the image after calibra-
tion and the exact sky showing that the errors due to ignoring the
weak sources in the model are two orders of magnitude smaller
than the next brightest sources. This shows that StEFCal can be
used as an algorithmic component in self-calibration procedures
based on iterative source model refinement.

We also carried out simulations with different settings for the
tolerance for convergence. The results for Case 2 (complete sky
model) are reported here. Table 2 summarizes the results for tol-
erances of 10−5 and 10−15. In the table, we show the maximum
difference between the absolute value of the image pixels be-
tween the exact sky and the image after calibration for both con-
vergence tolerances. The maximum difference we found is on
the order of 10−8, which is well below the noise level. This led
us to conclude that effective convergence can be achieved with
limited effort and reasonably “loose” convergence requirements.
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Table 3. Algorithm measured performance.

Nit fixed Tolerance 10−5

P Nit time Nit time convergence
50 40 0.0006 12 0.0002 3.5E-06

100 40 0.002 14 0.001 4.9E-06
200 40 0.008 16 0.003 1.9E-06
300 40 0.017 16 0.007 3.6E-07
400 40 0.036 16 0.014 2.6E-06
500 40 0.062 18 0.028 3.0E-08
600 40 0.093 18 0.042 1.7E-08
800 40 0.220 18 0.099 5.5E-07

1000 40 0.258 18 0.116 3.8E-08
1500 40 0.579 18 0.260 1.9E-07
2000 40 1.029 20 0.515 4.5E-09
3000 40 2.321 20 1.169 1.6E-08
4000 40 4.108 20 2.059 1.6E-07

Notes. In the table, Nit is the number of iterations and all times are in
seconds.

The table also reports the difference between two images ob-
tained after calibration for the two tolerances.

As already mentioned, we have run a long series of tests with
the number of antennas ranging from 20 to 4000, a variety of
source models, with and without adding antenna-based noise.
All cases showed similar outcomes to those reported here. This
supports the suitability of StEFCal for practical use in terms of
numerical performance and speed of convergence. The number
of iterations required appears to depend only very weakly on the
number of receivers. Typically, in the cases reported here, irre-
spective of the number of antennas, 10−5 or better convergence
could be achieved in 20 iterations or less and 10−15 convergence
in 40 iterations or less. Benchmarks are reported in Sect. 5.2.

5.2. Computational performance

The incomplete source model introduced in Sect. 5.1 (Case 1)
was used in the computational benchmarks reported here, al-
though far more extensive tests were carried out. In all cases,
StEFCal has shown very good performance characteristics de-
spite its iterative nature. This requires a refresh of the data for
each iteration for problems too large to fit in cache, as is the case
for any other iterative approach.

A number of factors underpin StEFCal’s performance:

– All computations are carried out through vector operations.
– Data are accessed by unit-stride, contiguous memory pat-

terns. This ensures maximum utilization of data loaded, en-
suring full use of cache lines, as well as emphasizing the role
of prefetching.

– StEFCal requires only a modest memory footprint (as dis-
cussed below).

We coded the algorithm in Fortran 90, compiled using the Intel
MKL Fortran compiler version 11.00. We used either Intel MKL
BLAS or handwritten code. The difference between these two
versions was 3% at most, so we only report on the results using
the Intel MKL library. We used a desktop system with an Intel
dual core Core 2 running at 3.0 GHz, single threaded (only one
core active), with single-threaded MKL BLAS.

We would like to mention that multithreaded parallelism
over frequency channels and/or time slices have also been devel-
oped and tested to very good effect. Table 3 and Fig. 6 report the
performance obtained for arrays with 50 to 4000 antennas. The
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Fig. 6. Algorithm scaling on a logarithmic scale. The red crosses de-
note the measured computing times; the black line shows the expected
computing times for quadratic scaling, normalized to P = 500: TP =
( P

500 )2 · T500.

figure compares the measured computing times against those ex-
pected for perfect quadratic scaling with the number of antennas,
normalized to P = 500. Both the table and figure highlight the
efficiency of the algorithms, as well as its quadratic scalability
over the number of elements.

One full iteration requires the element-wise product of two
complex vectors and two complex dot products per gain param-
eter. In terms of real valued floating point operations, this is
equivalent to 24P2 flop, where each complex multiply-add re-
quires 8 flop. One dot product corresponds to computing the
square of the 2-norm (or F-norm) and the cost of that dot product
can be halved, leading to a grand total per iteration of 20P2 flop.
The algorithm does indeed require O(P2) operations as in our
initial claim.

The system used for benchmarking had a peak speed of
12 Gflops, and the peak speed observed for MKL DGEMM
was ∼11 Gflops. StEFCal showed performance figures of over
3 Gflops. Given the nature of the computation, both the speed
and the scalability observed are very good (over 25% peak
speed). Tests have shown that even better performance can be
obtained on more modern CPUs.

The memory footprint of StEFCAL is modest:

– The measured visibilities and the model visibilities are com-
plex valued P × P matrices, requiring 16P2 bytes per ma-
trix for storage in double-precision floating-point format.
Thanks to their Hermiticity, one could store these matri-
ces in compressed triangular storage format. However, this
would require accessing their elements with non-unit vari-
able strides, thus considerably lowering computational per-
formance: given the memory available on current systems,
performance issues are overriding.

– One complex valued vector of length P is returned as output.
– One internally allocated complex valued vector of length P

is used.
– Depending on code internals, other complex vectors of

length P may be required.

The total amount of input and output data (32P2 + 16P bytes as-
suming double precision floating point format) results in the low
computational intensity of 24P2Nit/

(
32P2 + 16P

)
flop per byte

or approximately 3Nit/4 flop per byte for high values of P. Thus
StEFCal is memory bound, as observed in practice. As already
mentioned, this is greatly ameliorated by the memory access pat-
tern. While traditional O(P3) methods may increase the number
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of operations per memory transfer, they also increase the number
of operations by the same amount, thus resulting in much lower
performance overall.

5.3. Statistical performance

We performed a series of Monte Carlo simulations to assess
the statistical performance and robustness of the proposed al-
gorithm. We have defined three scenarios:

1. Calibration on two weak (S/N of −10 dB per time sample)
point sources.

2. Calibration on a realistic sky model.
3. Calibration on two strong (S/N of 20 dB per time sample)

point sources.

By choosing these scenarios, we try to explore the sensitivity of
StEFCal to violation of the assumption that R ≈ σnI, which was
used to derive the algorithm from the weighted least squares cost
function and hence get a feel for the range of applicability of the
algorithm. The antenna configuration used in these simulations
is the 200-element configuration shown in Fig. 1.

Since we can only estimate the phase difference between the
antennas, we assume that the first antenna will be used as phase
reference. We can therefore define the (3P − 1)×1 vector of free
parameters θ =

[
γ1, · · · , γP, ϕ2, · · · , ϕP,σn,1, · · · ,σn,P

]T, where
γp, ϕp, and σn,p are the gain amplitude, gain phase, and the
noise power of the pth element, respectively. Expressions for the
Cramer-Rao bound (CRB), the minimum achievable variance for
an unbiased estimator (Kay 1993; Moon & Stirling 2000), for
this scenario is derived by Wijnholds & van der Veen (2009).

5.3.1. Calibration on two weak point sources

In this scenario, two sources with source power σq = 1 for
q = 1, 2 were located at (l1,m1) = (0, 0) (field center or zenith)
and (l2,m2) = (0.4, 0.3), where l and m are direction cosines.
We set the measurement frequency to 60 MHz (λ = 5.0 m)
and defined σn = 10 for all antennas, such that both sources
have an S/N of −10 dB per time sample. This ensures that the
assumption R ≈ σnI, which we used to derive the algorithm
from the weighted LS cost function, holds. In this Monte Carlo
simulation, we calibrated the data using StEFCal, as well as
the multisource calibration algorithm proposed in Wijnholds &
van der Veen (2009), to compare the two approaches in terms of
statistical and computational efficiency. Simulations were done
for K = {103, 3 × 103, 104, 3 × 104, 105, 3 × 105, 106} time sam-
ples and each simulation was repeated 100 times. For Nyquist-
sampled time series, the number of samples is equal to the prod-
uct of bandwidth and integration time, i.e., K = Bτ. The chosen
range of values for K thus covers the most commonly used
range of values for bandwidth and integration time in radio as-
tronomical calibration problems with high spectral and temporal
resolution.

The biases found in the simulations are considerably smaller
than the standard deviation for this scenario based on the CRB.
This indicates that our algorithm is unbiased, hence that a com-
parison with the CRB is meaningful to assess the statistical
performance of the algorithm. Figure 7 shows the variance of
the estimated gain amplitude and phase parameters for K =
106, clearly showing that both algorithms achieve the CRB for
large K. Figure 8 shows the variance for a representative com-
plex valued gain estimate for all simulated values of the num-
ber of samples K. The result indicates that the CRB is already
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Fig. 7. Variance on the estimated gain amplitudes (indices 1 through
200, dimensionless) and phases (indices 201 through 399, in units of
rad2) parameters for calibration on two point sources with a S/N of
−10 dB. The solid line indicates the CRB.
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Fig. 8. Variance (dimensionless for amplitude parameters, in units of
rad2 for phases) of a representative complex valued gain estimate (p =
10) as function of the number of time samples. The lines mark the CRB
for the two parameters involved.

achieved for very low values of K. Based on the theory of ran-
dom matrices, matrix-wise convergence of the covariance ma-
trix estimate starts when the number of samples is about ten
times bigger than the number of elements (Couillet & Debbah
2011), which, in the case of a 200-element array, would be at
K ≈ 2 × 103. The proposed algorithm does not rely on math-
ematical operations that depend on matrix-wise convergence to
work properly, and this may provide an intuitive explanation for
this attractive feature of StEFCal.

The simulation results indicate that StEFCal achieves statis-
tically optimal performance when R ≈ σnI and thus has statisti-
cal performance similar to statistically efficient methods, such as
the algorithm described by Wijnholds & van der Veen (2009) or
optimization of the cost function using the Levenberg-Marquardt
solver. However, the proposed algorithm has only O(P2) com-
plexity instead of theO(P3) complexity of many commonly used
methods. This should give a significant reduction in computa-
tional cost of calibration, especially for large arrays. The Monte
Carlo simulations described here were done in Matlab on a sin-
gle core of a 2.66 GHz Intel Core i7 CPU. Gain calibration
for a single realization took, on average, 2.24 s when using the
method described by Wijnholds & van der Veen (2009) while
taking only 0.12 s when using StEFCal.
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Fig. 9. Variance on the estimated gain amplitudes (indices 1
through 200, dimensionless) and phases (indices 201 through 399, in
units of rad2) parameters for calibration on the scene shown in Fig. 2
with noise power equal to the integrated power of all sources.
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gain phase) of a representative complex valued gain estimate (p = 20)
as function of the number of time samples. The lines mark the CRB of
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5.3.2. Calibration on a realistic scene

In many array applications, the scene on which the array needs
to be calibrated in the field is considerably more complicated
than one or just a few point sources. To see how the algorithm
performs in a more realistic scenario, we used the scene shown
in Fig. 2 for calibration. We are still in the low-S/N regime, with
the noise power in each antenna being about ten times the total
power in the scene and the strongest sources having an S/N per
sample of −13.3 dB, so R ≈ σnI still holds.

We set up our Monte Carlo simulations in the same way as
for the first scenario. After checking that the algorithm produced
unbiased results, we compared the variance on the estimated pa-
rameters with the CRB. The results are shown in Figs. 9 and 10.
They indicate that the performance of StEFCal is still very close
to statistically optimal.

5.3.3. Calibration on two strong point sources

For our last scenario, we defined a simulation with two point
sources located at (l1,m1) = (0, 0) and (l2,m2) = (0.4, 0.3) with
an S/N of 20 dB per time sample. This is a scenario that clearly

10
3

10
4

10
5

10
6

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

number of samples

va
ria

nc
e

 

 

|g|, StefCal
|g|, CRB
arg(g), StefCal
arg(g), CRB

Fig. 11. Variance (dimensionless for gain amplitude, in units of rad2 for
gain phase) of a representative complex valued gain estimate (p = 5)
as function of the number for time samples. The lines mark the CRB of
the two corresponding parameters.

violates the assumption that R ≈ σnI. We performed the Monte
Carlo simulation in the same way as in the previous cases.

Figure 11 shows the variance of the gain and phase associ-
ated with a representative element as function of the number of
samples. The gain estimates, while not as close to the CRB as in
the previous cases, are still quite close to the bound. The average
gain amplitude error is still only 55% higher than the CRB, while
the average phase error is only 26% higher than the CRB. This
is acceptable given the high accuracy achieved in such a high-
S/N regime. We conclude that StEFCal provides a performance
that is close to optimal, even in scenarios designed to break the
underlying assumptions made to use the LS rather than the WLS
cost function. This shows that the algorithm is fairly robust in
terms of its statistical performance and will provide statistically
efficient estimates in scenarios typical of radio astronomy.

6. Extension to full polarization calibration

It is straightforward to apply the ADI approach to the full polar-
ization case as demonstrated by Hamaker (2000) and Mitchell
et al. (2008). Initial results for StEFCal have been presented by
Salvini & Wijnholds (2014a) and Salvini & Wijnholds (2014b)
and confirm the validity of StEFCal for full polarization calibra-
tion, still retaining O(P2) computational complexity. In this sec-
tion, we sketch the StEFCal algorithm for the full polarization
case. A full analysis will be provided in a future paper.

The mathematical problem is structured in terms of matrices
whose elements are two-by-two complex blocks, rather than by
individual complex values. In particular, the gain matrix G is a
block diagonal matrix whose 2 × 2 blocks on the main diagonal
describe the response of the two feeds of each receiver:

Gp =

[
G2p−1,2p−1 G2p−1,2p
G2p,2p−1 G2p,2p

]
. (31)

Taking this structure into account, the full polarization calibra-
tion problem can still be formulated as

Ĝ = argmin
G

∥∥∥∥R̂ −GMGH
∥∥∥∥

2

F
. (32)

It naturally follows that the basic step of full polarization
StEFCal consists of solving P 2×2 linear least squares problems
for each iteration, within the same StEFCal iteration framework
as for the scalar case described in this paper.
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Fig. 12. Full polarization algorithm scaling on a logarithmic scale. The
red crosses denote the measured computing times; the black line shows
the expected computing times for quadratic scaling, normalized to P =

500: TP =
(

P
500

)2 · T500.

Table 4. Full polarization StEFCal performance (see text). Times are in
seconds.

N. cores Time GFlops/s % CGEMM
1 16.63 17.9 41.8
2 8.34 35.8 41.9
3 5.57 53.5 42.2
4 4.19 71.2 41.8
8 2.90 102.9 42.0

10 2.35 127.0 42.2
12 1.92 155.3 41.3
16 1.72 173.3 38.3

Notes. In the table, all times are in seconds.

In general, the simple StEFCal algorithm, which has proved
very successful for the scalar case, exhibits slow or difficult con-
vergence. As shown by Salvini & Wijnholds (2014b), this can
be corrected by employing a multistep approach, whereby the
two previous solutions at the even steps are also included in the
averaging process. Moreover, some heuristics can be employed
to regularize the convergence rate.

Performance again proved very good, since the same consid-
erations as for the scalar algorithm apply. Since the density of
operations increases by a factor two per data item, a marginally
better speed has been obtained, in terms of Gflop per second.
An example of performance results is shown in Table 4. This
involved a realistic scenario of full polarization calibration of
the proposed SKA LFAA station, comprising of 256 antennas
(512 dipoles) for 1024 frequencies. The code was parallelized
over frequencies using OpenMP, whereby each core grabs the
first available frequency still to be calibrated (dynamic load bal-
ancing). All computations were carried out using single preci-
sion to a tolerance of 10−5, delivering better than 1% accuracy
in the complex gains, as required. Performance figures are com-
pared to the performance of MKL CGEMM (complex matrix–
complex matrix product), which virtually runs at peak speed and
gives a good indication of maximum speeds achievable.

Figure 12 shows that scalability with problem size has very
similar characteristics to those for the scalar problem. In this
simulation, we fixed the number of iterations to 100 and com-
pared the measured data against exact P2 scalability, normalized
to P = 500. It should be noted that the number of operations
per iteration now reads as 48P2. We also like to point out that
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Fig. 13. Calibrated all-sky image at 59.67 MHz made with the
288-antenna AARTFAAC system.

the convergence rate, i.e. the number of iterations required for
a given accuracy, exhibits the same very weak dependence on
problem size, i.e. the number of receivers, as in the case of scalar
StEFCal.

7. Applications

Figure 13 shows a calibrated all-sky map produced by the
Amsterdam-ASTRON Radio Transient Facility and Analysis
Centre (AARTFAAC1, Prasad & Wijnholds 2013). This system
is a transient monitoring facility installed on the six innermost
stations of the LOFAR, which this facility combines as a single
station with 288 antennas spread over an area with a diameter
of about 350 m. In this section, we describe the integration of
StEFCal in the AARTFAAC calibration pipeline to demonstrate
the ease of integration of the proposed algorithm in an existing
pipeline and the computational benefits.

The calibration of the AARTFAAC system involves estimat-
ing the direction-independent complex valued gains of the re-
ceiving elements, the apparent source powers of the four bright
point sources seen in Fig. 13, and a non-diagonal noise covari-
ance matrix to model the diffuse emission seen in the image
and the system noise. The non-diagonal noise covariance ma-
trix was modeled with one complex valued parameter for ev-
ery entry associated with a pair of antennas that were less than
ten wavelengths apart and a real valued parameter for every en-
try on the main diagonal. This calibration challenge was solved
using the weighted alternating least squares (WALS) algorithm
described by Wijnholds (2010). In each main iteration of the
WALS method, the direction-independent gains are first esti-
mated assuming that the other parameters are known, then the
source powers are updated, and finally the noise covariance ma-
trix is updated. To calibrate the AARTFAAC data set used to
produce Fig. 13, six main iterations were required. The middle
column of Table 5 shows the average time estimation of each
group of parameters took in Matlab on an Intel Core i7 CPU on
a machine with 4 GB RAM.

StEFCal was easily integrated in the WALS algorithm by
simply replacing the gain estimation step (which used an al-
gorithm of O

(
P3

)
complexity) with the StEFCal algorithm.

StEFCal was configured to iterate to convergence in each main
loop of the WALS method. Table 5 reports the computational

1 www.aartfaac.org
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Table 5. Processing time in seconds per main iteration of array cali-
bration using the original WALS as described by Wijnholds (2010) and
WALS with StEFCal.

Parameter Original With StEFCal
Gain 6.528 0.184
Source power 0.023 0.030
Noise covariance 0.003 0.003
Total 6.554 0.217

times, showing that StEFCal resulted in an increase in perfor-
mance of over a factor 30 when “cold starting”, i.e. without
any prior information for any timeslice. As gains are expected
to vary smoothly over time, a further eight-fold increase in per-
formance was obtained by using the results from the previous
timeslice as initial guess in the calibration of each snapshot (a
factor 250+ overall). This underscores the capability of StEFCal
to make good use of initial gain estimates.

The full polarization version of StEFCal is currently em-
ployed in MEqTrees (Noordam & Smirnov 2010). It is being im-
plemented in the standard LOFAR pre-processing pipeline and
studied for the SKA. As an example, the LOFAR central proces-
sor requires a number of steps including direction-independent
gain calibration (station-based) to provide initial corrections for
clock drift and propagation effects. The latter are mainly caused
by the ionosphere and may require full polarization corrections
on baselines to stations outside the core area. Recently, Dijkema
(2014) has implemented the basic version of full polarization
StEFCal for the standard processing pipeline of LOFAR. This
implementation was used to run the same pipeline on several
data sets from actual LOFAR observations twice, once with the
standard Levenberg-Marquardt (LM) solver and once with the
LM solver replaced by StEFCal. In all cases, the results ob-
tained were practically identical, but the pipeline with StEFCal
was typically a factor 10 to 20 faster than the pipeline running
the LM solver. Based on the material presented in this paper, we
expect that we can improve performance significantly by opti-
mizing the implementation of StEFCal used.

8. Discussion and future work

8.1. Other variants of StEFCal

We also studied a variant of StEFCal with relaxation, in which
the complex gains are used as soon as they become available,
rather than using the full set of complex gains from the pre-
vious iteration; i.e. the gain vector gets updated while looping
over all receivers and is then applied immediately. This variant
is listed in Algorithm 2. In general, this variant needs fewer iter-
ations. However, the receiver loop (the p-loop) for each iteration
has parallel dependencies, which makes this variant much less
portable to multicore and many-core platforms, such as GPUs,
although it could be valuable for more traditional CPUs.

Numerical performance appears very close to the standard
StEFCal, shown as Algorithm 1, but we have not attempted to
obtain a formal proof of convergence. Figure 14 shows the faster
convergence of Algorithm 2, in particular at the beginning of the
iteration.

Another variant of Algorithm 2, whose details are not re-
ported here, aims to decrease the parallel dependencies by block-
wise updates of the estimated gain vector (thus the latest values
of the previous block are used, while the old values of the current
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Fig. 14. Comparing algorithm performance for P = 500.

Algorithm 2 Algorithm StEFCal2
Initiate G[0]; G[0] = I is adequate in most cases
for i = 1, 2, · · · , imax do

G[i] = G[i−1]

for p = 1, 2, · · · , P do
z← G[i] ·M:,p ≡ g[i] ⊙M:,p

g[i]
p ← (R̂H

:,p · z)/(zH · z)
end for
if ∥g[i] − g[i−1]∥F/∥g[i]∥F ≤ τ then

Convergence reached
end if

end for

block are used). As expected, performance falls in between the
full relaxation and the original algorithm. It is felt by the authors
that loss of parallelism is more important than a rather modest
gain in performance.

The first version of StEFCal included an initial stage (again
with operation countO(P2)), which purified the largest eigenval-
ues and vectors of the observed visibilities (including estimation
of the autocorrelation terms), and then matched these against the
corresponding ones in the model sky. This worked very well and
was very fast, when the number of bright sources present in the
field of view was much smaller than the array size P. This variant
was presented at various meetings but was then dropped because
of the simplicity and power of the current version of StEFCal.

8.2. Extension to iterative reweighted least squares

In Sect. 2.1, it was pointed out that appropriate weighting of
each data point may be required to reduce the effects of outliers.
Typically, this is done by assigning weights to the data values
based on their reliability or use a different norm, for example the
1-norm, that is less sensitive to outliers. To handle such cases,
we have developed a variant of StEFCal that follows an itera-
tive reweighed least squares (IRLS) approach (Moon & Stirling
2000). In an IRLS algorithm, the data values are weighted so
that the 2-norm minimization becomes equivalent to minimiza-
tion using another norm. In our example below, we minimize the
1-norm of the residuals. The resulting algorithm still has O(P2)
complexity, but the individual iterations require more operations
to calculate and apply the weights.
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We aim to minimize the 1-norm of the residuals, which is not
the matrix 1-norm but the sum of the absolute values of all data
points

∥∆∥1 =
∑

q

∑

p

|R̂q,p − gqMq,pg
∗
p|, (33)

where the indices p and q run over the receiving elements. The
kernel of the algorithm is modified by using the weights

Wq,p =
1

|R̂q,p − gqMq,pg∗p|
(34)

with appropriate checks and actions for very small (or zero) en-
tries in the denominator.

We can apply these weights in the basic StEFCal iteration by
replacing (12) by

g[i]
p =

R̂H
:p ·

(
W:p ⊙ Z[i−1]

:p

)

(
Z[i−1]

:p

)H (
W:p ⊙ Z[i−1]

:p

) (35)

and applying corresponding changes to Algorithm 1. At the end
of each iteration, the appropriate weights would need to be com-
puted using (34).

As an example, we consider the calibration in the 2- and
1-norm of test data for 200 receivers with a tolerance of 10−7.
The 2-norm calibration required 28 iterations, while the 1-norm
calibration required 52 iterations. Computational costs per itera-
tion were higher by a factor 1.5. This factor can be explained
by the increased number of operations required for relatively
expensive calculations like taking the absolute value of a com-
plex number. An interesting question, which is beyond the scope
of this paper, is whether it is necessary to do 1-norm optimiza-
tion until convergence or whether the weights can be fixed after
a limited number of iterations when the solution is sufficiently
close to the optimum. Such an approach would reduce compu-
tational costs by avoiding the recalculation of weights from a
certain point in the iteration process.

8.3. Integration of StEFCal in other algorithms

In Sect. 7, we saw an example of how StEFCal was integrated
in an existing calibration pipeline. This particular example in-
volved a non-diagonal noise covariance matrix that was mod-
eled by introducing an additional noise parameter for each off-
diagonal entry of the noise covariance matrix that was assumed
to be non-zero. In this paper, we set the diagonal entries of the
array covariance matrix R̂ and the model covariance matrix M
to zero. We could easily accommodate the estimation of the non-
diagonal noise covariance matrix by setting not only the en-
tries associated with the autocorrelations to zero, but also the
entries associated with the non-zero off-diagonal entries of the
noise covariance matrix. We can use the same procedure to ac-
count for corrupted or missing data or for when short baselines
should be excluded. Of course, this should not be done unneces-
sarily, because exclusion of potentially useful information from
the gain estimation process will degrade the gain estimation
performance.

Estimation of direction-dependent gains is currently a hot
topic in radio astronomy (Wijnholds et al. 2010). Apart from
brute force approaches using the Levenberg-Marquardt solver,
two iterative approaches, the differential gains method pro-
posed by Smirnov (2011) and calibration using space alternat-
ing generalized expectation maximization (SAGECal) proposed

by Yatawatta et al. (2009) and Kazemi et al. (2011), have be-
come quite popular. Both methods iterate over the directions
for which antenna-based gains need to be estimated, assuming
that the other directions are already calibrated. In doing so, both
methods reduce the estimation problem for each specific direc-
tion to the problem of estimating direction independent gains.
Currently, the Levenberg-Marquardt solver is used for each of
these subproblems, but given the nature of the problem, those
estimation steps could be replaced by StEFCal, which is a solver
specific to the problem. Introducing StEFCal in such an algo-
rithm can potentially reduce their computational requirements
significantly as demonstrated by Salvini & Smirnov (2013) and
Salvini & Wijnholds (2014a).

8.4. Summary of main results

In this paper we have analyzed the performance of ADI meth-
ods for solving antenna-based complex valued gains with O(P2)
complexity. We have

– done a rigorous analysis of convergence showing that the al-
gorithm converges to the optimal value except in a number
of special cases unlikely to occur in any practical scenario;

– reported on its numerical and computational performance;
in particular, we highlighted its raw speed, as well as its
scalability;

– assessed the statistical performance and shown that it per-
forms very close to the Cramer Rao bound (CRB) in most
realistic scenarios;

– commented on variations in the basic ADI method, extension
to full polarization cases, and inclusion in more complex cal-
ibration scenarios.
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Abstract 

 
 Alternating Direction Implicit (ADI) methods provide a computationally efficient way to solve for antenna based 
gains in full polarization. In this paper, we analyze the convergence of such methods in simulations. We show that 
convergence of a basic implementation can be quite slow and we propose two forms of relaxation to improve 
convergence behavior. The algorithm can be shown to be statistically efficient in low-SNR scenarios, which makes this 
approach particularly suitable for calibration of large radio astronomical arrays like the Square Kilometre Array (SKA). 
This also led to the name Statistically Efficient and Fast Calibration (StEFCal). The algorithm was implemented in 
several stages of the Low Frequency Array (LOFAR) calibration pipeline. We report on calibration performance 
improvement achieved with StEFCal in this pipeline. 
 

1. Introduction 
 
 Alternating Direction Implicit (ADI) methods provide a computationally efficient way to solve for antenna based 
gains. This was recognized by Johan Hamaker, who suggested to use it for full polarization calibration of radio 
astronomical arrays [1]. The Murchison Wide-field Array (MWA) uses an ADI approach for full-polarization 
calibration of the array in their real-time calibration pipeline, in which only one iteration is used using the result from 
the previous iteration as starting point and averaging the two solutions [2]. Salvini et al. showed that averaging after 
every second iteration is actually essential to ensure robust and fast convergence of the ADI iterations [3]. Since this 
approach turned out to be not only computationally efficient, but also statistically efficient [4], the algorithm now lives 
by the name StEFCal: Statistically Efficient and Fast Calibration. 
 
 In this paper, we propose two modifications to the basic full polarization algorithm with averaging after every 
second iteration. The first modification exploits 6-point averaging instead of 2-point averaging. The second 
modification is to use an update gain solution as soon as it becomes availabe. The second modification precludes 
parallellization of the algorithm over antenna index. However, in practice, radio astronomical data consists of many 
time and frequency samples and their processing is usually parallellized along those dimensions. The basic algorithm 
and the proposed modifications are described in more detail in the next section. In section 3, we assess convergence of 
the basic algorithm and its modified variants showing that the proposed modifications significantly improve speed of 
convergence. The algorithm was implemented in several calibration pipelines for the Low Frequency Array (LOFAR). 
We report on the achieved calibration performance improvement achieved with StEFCal in section 4. We conclude that 
StEFCal can calibrate radio astronomical arrays in full polarization with O(N2) numerical complexity, where N is the 
number of antennas to be calibrated. This scaling makes the algorithm particularly attractive for large arrays like 
LOFAR [6] and the Square Kilometre Array (SKA) [7]. 

 
2. Description of algorithm 

 
 The mathematical problem consists of finding the minimum with respect to the gain matrix G of 

min
G
D−GHMG

F
 

where D represents the observed visibilities (the data), M the model visibilities and GH denotes the Hermitian transpose 
of the gain matrix G. G is diagonal for scenarios without polarization, or the scalar case, with Gjj corresponding to the 
complex gain for the jth antenna. In cases with full polarization, G is a block-diagonal matrix, whose jth 2-by-2 block 
corresponding to the two feeds of the jth antenna can be described as 
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where the off-diagonal terms correspond to the crosstalk between the dipoles. 
 
 The ADI formalism keeps GH fixed at each iteration while minimizing G. It can be shown, that the ADI 
approach splits the problem into N separate 2-by-2 Linear Least Squares problems solvable by, for example, the normal 
equations method: 

min
Gj

Z j
H Dj − Z j

H Z j( )Gj
[k ]

F
,∀j, j =1,2,..., N  

where Zj =Z:,2j-1:2j are the two columns of the matrix Z = G[k-1]M for the dipoles of the jth antenna, Dj and Mj are the 
corresponding columns of the matrices D and M respectively, and k is the iteration number. 
 
 In general, this simple algorithm shows poor convergence.  However, this can be improved very considerably in 
a number of ways: 
 

1-basic Average the odd and even iterations – highly parallel 
1-relax As 1-basic, but also build a linear combination with previous iterations Gj

[k-2] and Gj
[k-4] – highly 

parallel 
1-monitor As 1-relax with heuristics to regularize convergence – highly parallel 
2-basic Use the Gj

[k] as soon as they are computed within each iteration – parallel dependencies 
2-relax As 2-basic, but using a linear combination with the previous iterate Gj

[k-2] – parallel dependencies 
 
 Here, highly parallel means that within each iterations the Gj can be computed in any order irrespective of the 
others (hence suitable, for example, for GPUs); when there are parallel dependencies, the computation of the Gj within 
each iterations requires the Gi, for all i < j (unsuitable for many-core platforms, suitable for single threaded operation).  
All these algorithms 

• have a small memory footprint, only requiring the visibility matrices (in full square form as explained in the next 
point) and two to four comples vectors of length N; 

• have access to data (hence memory) exclusively by unit strides (consecutive memory storage) thus allowing very 
high levels of performance; 

• require only 44 (2 N)2 real operations for each iteration. 
 

3. Simulation results 
 

 We studied the convergence of the five algorithms for a test case with 100,000 sources following an exponential 
power distribution and including a few polarized sources. We included the brightest sources (about 30) in the sky model 
to build the model visibilities. The array configuration consisted of 256 dual-polarized antenas with a random 
distribution. The convergence results are reported in Figure 1. These results highlight the poor rate of convergence for 
the 1- and 2-basic algorithms and show that the other algorithms have comparable rates (i.e. slopes) of convergence 
after the initial steps.  An important improvement to the 1- algorithms is to introduce some bootstrapping, i.e. to solve a 
simpler but related problem to achieve a much larger convergence initially, and using the results to start off the 
computation of the main iteration, for example by using a narrow band of the visibility matrices.  This has proved very 
effective in practice. 
 
 Because of the characteristics of the StEFCal algorithms both high levels of performance and excellent scaling 
with problem size can be achieved, as shown in Figure 2. All results shown have been obtained by optimised code 
written by the authors, in double precision, running on a dual CPU node with Intel Xeon 2650 8-cores 2.0GHz CPUs.  
All performance data are for running on a single core. The figure reports scalability with size normalised to the number 
of iterations required and clearly show the very good scaling achieved as well as the fact that the computational costs 
are O(N2).  In all cases, a convergence tolerance of 10-8 was set, most likely exceeding the demands of any practical 
application. Performance of the order of 50% of peak was achieved, which confirms the efficiency of StEFCal. 
 
 We have also tested a realistic scenario of full polarization calibration of a proposed SKA Low Frequency 
Aperture Array (LFAA) station, comprising of 256 antennas (512 dipoles), for 1024 frequencies [8]. The code was  



parallelised over frequencies using OpenMP, whereby each core grabs the first available frequency yet to be calibrated 
(dynamic load balancing).  All computations were carried out using single precision to a tolerance of 10-5, delivering 
better than 1% accuracy in the complex gains, as required.  Bootstrapping, as defined above, was employed. 
 
 Peak performance was defined as the performance of Intel MKL CGEMM (single precision complex matrix-
matrix product), for an optimal matrix size (nominal peak is 44.8 GFlops), on the required number of cores.  Notice, in 
particular, the decrease in scalability as the number of cores in use increases.  This is due to unavoidable memory ad 
other contentions and affects StEFCal as much as CGEMM.  In all cases, scalability and performance are very good. 
This clearly shows the potential of StEFCal for SKA LFAA calibration. 

 
4. Practical results 

 
 The Amsterdam-ASTRON Radio Transient Facility and Analysis Centre (AARTFAAC) is an transient 
monitoring facility installed on the innermost six LOFAR stations. This facility lets these stations operate together as a 
single 288-antenna station with a diameter of 350 stations. AARTFAAC exploits image plane transient detection which 
requires near real-time calibration and imaging with a cadence of one second [5]. Calibration of the AARTFAAC 
system involved estimation of antenna based gains, apparent source fluxes and apparent source positions. Estimation of 
these parameters is done by alternatingly updating these groups of parameters. It was therefore straightforward to 
replace the original antenna based gain estimation step by the basic variant of StEFCal for the non-polarized case. Since 
the AARTFAAC system has 288 antennas, replacing the original estimator with O(N3) complexity by StEFCal with 
O(N2) complexity could potentially reduce the compute cost by a factor of order 100. Due to the larger number of 
iterations required by StEFCal, the net result was a factor 35 reduction in compute load. If the results from the previous 
timeslice were used as initial estimate, the number of StEFCal iterations could be reduced to one, reducing the compute 
load by another factor 8 for a total reduction of a factor ~200. 
 

 
Figure 1 Convergence rate of algorithm variants 

 
Figure 2 Algorithm scaling 

 
N.Cores Time (s) GFlops %CGEMM 

1 16.63 17.9 41.8% 

2 8.34 35.8 41.9% 

3 5.57 53.5 42.2% 

4 4.19 71.2 41.8% 

8 2.90 102.9 42.0% 

10 2.35 127.0 42.2% 

12 1.92 155.3 41.3% 

16 1.72 173.3 38.3% 
 

Table 1 Multi-core performance results 
 

 
 

Figure 3 Multi-core performance results 
 



 The LOFAR central processor performs a number of steps on the raw data produced by the correlator correlating 
the signals from the LOFAR stations. These steps include a calibration step for direction independent (station based) 
gains to provide initial corrections for clock drift and propagation effects. The latter are mainly caused by the 
ionosphere and may require full polarization corrections on baselines to stations outside the core area. Recently, Tammo 
Jan Dijkema made an implementation of the basic version of full polarization StEFCal for the standard processing 
pipeline of LOFAR. This implementation was used to run the same pipeline on several data sets from actual LOFAR 
observartions twice, once with the standard Levenberg-Marquardt (LM) solver and once with the LM solver replaced by 
StEFCal. In all cases, the results obtained were practically identical (there were some small differences caused by the 
different numerics of the two solvers), but the pipeline with StEFCal was typically a factor 10 faster than the pipeline 
running the LM solver. Based on the material presented in this paper, we expect that we can boost improvement by at 
least another factor five by optimizing the implementation of StEFCal. 

 
5. Conclusions and future work 

 
  In this paper, we showed that two forms of relaxation can be used to improve the convergence behavior of 
simple ADI methods for antenna based gain estimation. The first approach is to use a weighted 6-point average, the 
second modification is to use updated gain solutions as soon as they become available. We assessed the computational 
performance in simulation showing perfect quadratic scaling for array sizes ranging from 100 to 4000 antennas and 
demonstrating the excellent use of computing resources. The effective use of computing resources and quadratic scaling 
make StEFCal well suited for large radio astronomical arrays like LOFAR and SKA. This was demonstrated by 
implementing StEFCal in the AARTFAAC calibration pipeline (no polarization) and the standard LOFAR post-
correlation pipeline (full polarization). In both cases, at least a factor 10 reduction in compute time for calibration was 
achieved. Despite the low number of operations per sample required by StEFCal and corresponding I/O limitations in 
GPU implementations, an experimental implementation on GPUs is currently being studied. This is potentially 
interesting for SKA LFAA station calibration, since StEFCal can potentially be integrated with the station correlator if 
the latter is implemented on GPUs. 
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