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2 Short description

Many changes have been made in Casacore and CASA code to improve performance,
especially on multi-core systems and on distributed platforms using a large global file system
like Lustre. The two Casacore forks (Googlecode and CASA) have been unified; it is now
available at https://github.com/casacore/casacore.

The attached publication discussing the Casacore Table Data System has been accepted by
the Astronomy & Computing journal for their special issue about astronomical data formats. It
discusses several of the improvements made in this Joint Research Activity-Hilado of the
RadioNet3 program and shows performance. The paper “Casacore Table Data System and its
use in the MeasurementSet” is attached to this document.

Several other changes, not discussed in the paper, are given below.

- Made all statics in casacore thread-safe, so it can be used safely in a multi-threaded
environment.

- Multi-threaded sorting and other algorithms to improve performance.
- Improvements in handling of coordinates and FITS.
- Addition of arbitrary attributes and multiple beams to images.

- Made sure all code compiles without warnings and all tests pass, also when using a
checking tool like valgrind.

Copyright

© Copyright 2015 RadioNet3

This document has been produced within the scope of the RadioNet3 Projects.

The utilization and release of this document is subject to the conditions of the contract within
the 7" Framework Programme, contract no, 283393
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The Casacore Table Data System (CTDS) has been developed as part of the CASA (formerly AIPS++) package
for (radio-)astronomical data processing. It offers a relational-like data model extended by the ability
to store large arrays. A versatile query language can be used for data queries and manipulation. CTDS
forms the basis of the MeasurementSet, the primary data format used for the data acquisition and data
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1. Introduction

The Casacore Table Data System has existed for over 20 years,
but there has been no paper describing it. Recent developments,
and its use by large radio telescopes producing TBytes of data,
motivate production now of a publication, whose description of
lessons learned can make a timely contribution to the current
debate within the wider community regarding astronomical data
formats.

In 1992 it was decided that the Astronomical Image Processing
System (AIPS) should have a successor, to be called AIPS++. A few
institutes teamed up and started the analysis and design in 1992.
Over time AIPS++ was renamed to CASA (Common Astronomy
Software Applications). In 2006 it was decided to split off Casacore,
the core part of CASA, to differentiate between the commonly
applicable software and the software developed for the ALMA and
JVLA instruments. Casacore is now used at several radio telescopes
around the world.

Farris analysed the needs for the storage and processing of
future radio-astronomical datasets. The results are summarised in
the description of the first CTDS version (van Diepen and Farris,
1993). The analysis showed that various applications have different
access patterns to the data, requiring flexible data access. For ad
hoc applications like data inspection and plotting, flexible data
selection is needed. Operations like calibration and imaging draw

* Part of the research leading to these results has received funding from the
European Commission Seventh Framework Programme (FP/2007-2013) under
grant agreement No. 283393 (RadioNet3).

E-mail address: diepen@astron.nl.

http://dx.doi.org/10.1016/j.ascom.2015.06.002
2213-1337/© 2015 Elsevier B.V. All rights reserved.

on large bodies of data. Multi-dimensional arrays are the most
natural modes for such scientific data. It was concluded that the
data system will play a key role for efficient and flexible data access
to make the implementation of existing and new algorithms easily
possible. The relational data model (Codd, 1970) was quite well
suited, but needed to be extended by the ability of storing arrays.

In 1993 the Flexible Image Transport System (FITS) (Wells et al.,
1981) was quite basic and not well suited for interferometric
visibility data. The new version of the Hierarchical Data Format
(HDF5') was in its early development stages, while other data
formats did not exist. Therefore it was decided to design a data
system, the Casacore Table Data System (CTDS), meeting the
requirements following from the analysis. The first development
took place in 1993 and since then it has seen many improvements.
It can be seen as a NoSQL? system building on the relational model
with two important features:

e The value in a table cell can be a multi-dimensional array.

e There are no explicit primary keys. Instead the row number is
the implicit key in a table. This is possible because in principle
rows are never deleted from a table.

A particular example of a Casacore table is the MeasurementSet
containing the observed visibility data. It is briefly described in
Section 2.1.

CTDS was developed in an era where parallel processing was
hardly present.> This appeared not to be a real problem for the

1 http://www.hdfgroup.org.
2 Not only SQL; see en.wikipedia.org/wiki/NoSQL.

3 A collection of desktops could be seen as an unsupervised distributed
processing system.

http://dx.doi.org/10.1016/j.ascom.2015.06.002
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new large-scale SKA pathfinder instruments because their data can
be partitioned by spectral band. Processing steps like flagging and
calibration can be done independently for each partition making
embarrassingly parallel processing on a cheap cluster with local
disks possible. Such a system has the benefit that 10 scales linearly
(an extra node means extra IO capacity). Another benefit is that
processing can be brought to the data, not the other way around.
This scheme is used by LOFAR to handle observations consisting of
several TBytes of data. Typically, 384 spectral bands are distributed
over 96 nodes. It is being considered for handling the Square
Kilometre Array (SKA) data. The virtual concatenation mechanism
of CTDS makes it possible to treat all those parts as a single
MeasurementSet which is exploited by the CASA package for the
JVLA and ALMA data processing. Although CTDS does not support
parallel 10 natively, it is quite adaptable. Section 5.4 discusses
recent developments making parallel IO possible.

CTDS has a strong distinction between the logical and the
physical data models described in Sections 2 and 3. The user’s view
of a table is the logical data model, a simple collection of rows
and columns. Relations with other tables are defined in columns
containing foreign keys, usually a row number. The logical data
model is mapped to the underlying physical data model, where
data managers take care of storing and retrieving the data in
an efficient and flexible way. It makes it quite easy to develop
specialised and experimental storage methods by developing a
new data manager.

CTDS comes with a powerful SQL-like query language, TaQL,
making arbitrary data selection, sort, and manipulation possible.
The result of a selection and sort is a view on the original table,
behaving as an ordinary table.

The Casacore Table Data System is written in C++ as part of
the Casacore” software package and makes use of other parts of
Casacore. The low-level C++ interface can be used by applications,
that have to link against the Casacore libraries. The Pyrap® package
offers a high-level interface in Python. Astronomers use the Python
interface quite often for ad hoc data plotting and manipulation.

2. Logical data model

Detailed storage parameters should be hidden as much as
possible for the regular user and application programmer. CTDS has
been designed that way by using a logical data model as a simple
view on the data. Similar to a relational database table the data in
a CTDS table are logically organised in rows and columns. Columns
containing keys define the relations between tables. As described
in Section 3, data managers take care of storing and retrieving the
data.

Each cell in a column can contain a scalar value or a multi-
dimensional array. Individual cells can be accessed and an entire
column can be accessed as an (N 4 1)-dim array. Access to array
slices and column slices make flexible data access possible. The
schema (table description) defines the data type of a column and
optionally the dimensionality or shape of arrays to be stored in a
column. All basic data types (boolean, integer, float, complex, and
fixed and variable length string) are natively supported. Compound
data types (possibly nested) are supported by aggregating the data
in a struct-like data type. Similar to FITS (Pence et al., 2010) a CTDS
table can have keywords to define some properties of the table or
its columns. They are used for a few purposes:

4 https://github.com/casacore/casacore.
5 https://github.com/casacore/python-casacore.

e References to subtables containing the metadata of a dataset.
They define the relations between the main table and its
subtables. The MeasurementSet (Kemball and Wieringa, 2000),
described in Section 2.1, is a good example how subtables are
used.

e The definition of the physical unit of the data in a column. The
TaQL query language uses it to do unit conversion if needed.

e The definition of the reference frame of coordinates in a column.
For example, J2000 for celestial coordinates or ITRF for earth
positions. They are directly related to the Measures® module in
Casacore that is used for coordinate conversions.

CTDS tables do not have the concept of a primary key. Instead
the row number in a table serves as the virtual key avoiding the
need of indices and key lookup. This is similar to array indices used
in SciQL (Zhang et al., 2012). Using the row number is adequate
because the tables are usually write-once. It is possible to remove
rows, but in practice it is never done because data selection is used
to ignore rows. Another advantage of using the row number is that
data in external files can be used directly as long as a row number
can be mapped to a file offset. This is discussed in more detail in
Section 3.2. Arbitrary views on a table or set of tables can be made
using selection, sort, iteration, or concatenation. These operations
result in a so-called reference table that behaves as an ordinary
table, thus has the same logical data model and offers the same
access functionality. The reference tables can be made persistent.

A CTDS table is represented as a directory containing several
files. The name of a table is the name of the directory. The table
schema and some auxiliary info are stored in a file created at the
logical data model level. All other files are created and accessed at
the physical data model level. A subtable is usually a subdirectory
of the main table. It means that in the case of, for example, the
MeasurementSet all data and metadata of an observation are in a
single directory which can be moved, tarred, etc.

2.1. MeasurementSet

A particular example of a set of CTDS tables is the so-called
MeasurementSet (Kemball and Wieringa, 2000). It is a structured
collection of tables holding the interferometric visibility data and
the metadata. It is used in several examples in other sections, hence
a short description of the MeasurementSet is given.

Fig. 1 shows the tables and columns in a MeasurementSet.
It also shows the relations between the tables. The main table
contains the bulk data. Each row contains the visibility data matrix
(usually 4 correlations and many frequencies) for a particular time,
baseline, and possibly other parameters like field. Corresponding
flags tell if a visibility has to be ignored. Metadata columns
define the baseline, time, and other parameters of the visibility
matrices. The most important columns with their data types,
shapes, and units are given in Table 1. The MeasurementSet
has additional subtables containing the metadata of the entire
observation. For example, the ANTENNA subtable defines the
name, position, and other properties of the telescope antennae.
The FIELD subtable defines the phase centre of the observed field
(usually given as J2000 right ascension and declination in radians).
Metadata columns define the table relations. For example, column
ANTENNAT1 in the main table contains the row number in the
ANTENNA subtable for the first antenna of a baseline.

The MeasurementSet format is fully extendible by adding
instrument-specific subtables and columns. The MeasurementSet
definition prescribes that such columns and subtables should have

6 http://www.astron.nl/casacore/trunk/casacore/doc/html/group__Measures__
module.html.
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Fig. 1. Schema of the LOFAR MeasurementSet.

Table 1

Important columns in the MeasurementSet main table.
Column Format Unit Description
TIME Double s Integration midpoint
INTERVAL Double s Sampling interval
ANTENNA1 Int First antenna of baseline
ANTENNA2 Int Second antenna of baseline
DATA_DESC_ID Int Data descriptor (spectral band)
FIELD_ID Int Row number in FIELD subtable
uvw Double(3) m UVW coordinates of baseline
DATA Complex(nc,nf) Visibilities per time, baseline
WEIGHT Float(nc) Visibility weights
FLAG Bool(nc,nf) True = visibility is bad
FLAG_ROW Bool True = entire row is bad

the instrument’s name as a prefix. Schoenmakers and Renting
(2012) define the structure of the MeasurementSets used at the
LOFAR telescope. Its structure is shown in Fig. 1. It has several
LOFAR-specific columns and subtables, mostly used to describe the
layout of the dipoles and tiles in the stations (de Vos et al., 2009),
the LOFAR equivalent of radio-telescope antennae.

3. Physical data model

The logical data model has to be mapped to disk in an efficient
way, which is taken care of by the physical data model. Its data
managers are responsible for storing/retrieving the data in the
columns of the logical data model. The data manager best suited for
handling a column depends on the type of data. Basically a dataset
can contain two types of data:

e The bulk data. For example, the pixels in an image or the
visibilities and flags in a MeasurementSet. These data are multi-
dimensional arrays.

e The metadata describing the bulk data like the baselines and
times. Data selection is usually based on the metadata, so having
all metadata close together can result in much better query
performance.

To achieve efficient storage and retrieval, the table designer needs
to have some knowledge of the data manager properties. There are
two basic types of data managers:

e Astorage manager stores the data of columns in a disk file. CTDS
comes with a few storage managers:

- The Tiled Storage Manager is meant for the bulk data arrays.
It stores them in a tiled (chunked) way for efficient access. It
is described in more detail in Section 3.1.

- The Standard and Incremental Storage Manager are meant for
the metadata. The Incremental Storage Manager automati-
cally compresses the data by only storing a value if different
from the previous row. The Standard Storage Manager stores
the data in a columnar way as used by modern database sys-
tems like MonetDB (Boncz et al., 2009). These data managers
are very well suited for query purposes.

http://dx.doi.org/10.1016/j.ascom.2015.06.002
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Currently, each storage manager instance uses its own file(s)
making the file structures quite easy (no special indices are
needed). Usually this is not a problem, but in some cases the
number of files can grow too large. A recent development has
addressed this issue by combining many table files in a single
file as described in Section 3.3.

e A virtual column engine calculates the data of a column on
the fly. An example is the engine to compress 32-bit floating
point values by scaling them to 16-bit integer values. Another
example is an engine calculating the UVW coordinates on the
fly instead of storing them.

Besides the predefined data managers mentioned above, spe-
cialised or experimental user-written data managers can be used.
This feature makes CTDS very flexible and adaptive. More details
and some examples are given in Section 3.2. At table creation time
the columns are bound to data managers. Normally most metadata
columns are bound to a single data manager instance to keep the
number of files sufficiently low. It can also improve 10 performance
when a selection on multiple columns is done. Bulk data columns
can be combined as well, but 10 will be less efficient if only a single
column needs to be accessed.

3.1. Tiled storage manager

Tiling of data arrays is a technique used in several packages to
improve 10 performance when accessing data along different axes
or when slices of an array are accessed. It also improves locality
when accessing an area around a point in a multi-dimensional
space. It is, for example, used in packages like HDF5’ (where it
is called chunking) and Karma.® Recently tiling has been added to
FITS (White et al., 2012; Pence et al., 2012).

The basic idea is that storing a large array in a linear way
makes access along the slower varying axes very slow. Instead the
N-dim array is partitioned into smaller rectangular N-dim tiles.
The data in each tile and the tiles are stored linearly. In this way
access along any axis means that only a limited number of tiles
are needed, but data have to be shuffled to map the tiles to the
array in memory. The tile shape defines the efficiency of the access
along the different axes. It should be defined such that the most
frequently used access patterns are served best. When iterating
through the data, the next data access often needs the same tiles.
Therefore the recently accessed tiles should be kept in a cache.

CTDS supports the storage of data in a tiled way by means
of the Tiled Storage Manager (TSM). For example, a spectral line
image with axes Ra, Dec, Frequency and shape [8192,8192,4096]
can be tiled like [128,128,64] to make access in all directions
about equally fast. The TSM reads and writes a tile as a single
10 block. It maintains a cache containing the most recently used
tiles. The cache should be sized appropriately to minimise IO. If
the application does not set the size explicitly, the TSM will guess it
from the access pattern and resize if necessary. Usually it can guess
well, but for more random-like access patterns the application
should size the cache. Given the example image above, accessing
all pixels along the Frequency axis for a given Ra, Dec needs a cache
of 4096/64 tiles to avoid rereading tiles when iterating over Ra,
Dec. Note this cache size assumes that iteration over Ra, Dec is not
fully sequentially, but only sequentially per tile. Otherwise a larger
cache would be required. The TSM keeps cache statistics, which
can be used to learn if the cache behaves as expected. Section 3.4
shows some performance numbers of the Tiled Storage Manager
compared to HDF5 and plain Linux IO.

7 http://www.hdfgroup.org.
8 http://www.atnf.csiro.au/computing/software/karma.

3.2. External data managers

Usually the predefined storage managers do a good job, but
it can be desirable to write a dedicated or experimental storage
manager. This is possible by writing a C++ class for such a storage
manager and building it as a shared library. The class has to be
derived from the abstract DataManager base class in CTDS. When
CTDS detects that a table uses a data manager with an unknown
name, it will dynamically load the shared library with that name
and call a function to register the data manager. This feature is
used to facilitate data access for the LOFAR and ALMA telescopes,
detailed below.

e The LOFAR telescope can have a very high data acquisition rate
(up to 16 GB/s) and direct disk IO is preferable. Therefore the
visibility data coming from the correlator are stored in a LOFAR-
specific way. Yet, such data can be handled transparently as
a CTDS table using the LofarStMan data manager developed
for this purpose. It makes all applications fully agnostic to
this specific data format. LofarStMan is a combination of a
storage manager and virtual column engine. Only a few columns
(visibility data and weights) are really stored, all others are
derived from some header data or calculated on the fly.

e The ALMA telescope consortium chose to store and archive the
data in the SDM format (Viallefond, 2006). A special storage
manager was written to let the CASA® software access the
visibility data directly in the SDM file instead of having to copy
them all. For the ALMA data processing pipeline it resulted in a
20% performance gain and 50% reduction in disk usage.

3.3. MultiFile

As discussed above CTDS can generate many files holding the
data columns of a table. It proved to be problematic if many
MeasurementSets were used jointly as done in the CASA package.
Another disadvantage is that a parallel file system like Lustre
(Schwan, 2003) cannot efficiently handle many small files.

The MultiFile mechanism has been developed to address this
issue. It combines the data files in a single file in a way similar
to the Sionlib (Frings et al., 2009) package. A simple index maps
the data blocks in the MultiFile to the individual files. MultiFile
adds the possibility of defining an 10 block size matching the file
system'’s block size for better performance. Tests have shown that
the performance of MultiFile is comparable to the separate files
currently used, so in the near future the MultiFile feature will
probably become the default behaviour.

3.4. Performance tests

Several tests have been done to compare the performance of
CTDS, HDF5, and plain Linux I0. An uncompressed 32-bit float array
with shape [1024,1024,1024] (4 GBytes) is written using different
tile shapes. Such an array resembles an image cube with axes right
ascension, declination, and frequency (the first axis varies most
rapidly). The data were written tile by tile (thus sequentially) and
retrieved using the following access patterns, for which the CTDS
and HDF5 caches have been sized appropriately.

e Tile by tile (the optimal pattern). This pattern is useful for whole
array operations like finding the maximum.

e Plane by plane (xy, xz, and yz). An image is often accessed in xy
order, for example when displaying the image cube.

9 http://casa.nrao.edu.
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Table 2
Linux performance tests on 4 GB dataset.

Tile shape Access CTDS HDF5 Linux IO CTDS HDF5
Elapsed time User time
64,64,64 write 4.1 8.1 25
32,32,32 write 3.8 8.2 24
16,16,16 write 4.8 12.6 3.1
88,8 write 115 45.2 45
64,64,64 tile 1.9 1.3 14
32,32,32 tile 14 14 13
16,16,16 tile 15 4.6 13
88,8 tile 6.4 26.5 1.5
64,64,64 Xy 25 35 1.6 23
64,64,64 Xz 32 5.1 2.3 3.9
64,64,64 yz 19.8 54.6 18.8 534
64,64,64 X 3.2 734 2.6 72.6
64,64,64 y 4.5 108.0 38 107.2
64,64,64 z 14.3 127.6 133 126.6
32,32,32 Xy 25 8.7 1.7 7.5
32,32,32 Xz 34 11.8 2.6 10.6
32,32,32 yz 16.1 51.6 14.9 50.2
32,32,32 X 34 136.2 24 135.1
32,32,32 y 4.7 177.2 3.6 176.2
32,32,32 z 12.2 196.3 113 195.2
Table 3
Linux performance tests on 256 GB dataset.
Tile shape Access CTDS HDF5 Linux I0
64,64,64 write 3395 348.3 318.3
64,64,64 tile 3711 372.0 343.2
64,64,64 Xy 579.8 7233
64,64,64 X 537.5 >4200

e Line by line (x, y, and z). An image is often accessed in z order
for operations along the frequency axis like subtracting the
continuum or rotation measure analysis.

The CTDS tile size and HDF5 chunk size define the 10 block size. For
comparison a dataset of 4 GBytes has been written and read using
unbuffered 10 (Unix read/write) with the same block sizes. In all
tests no fsync has been done, because HDF5 does not have an fsync
option. The tests have been performed on a Ubuntu system with
128 GB memory running Linux 3.2.0-61-generic. It has multiple
Intel Xeon CPUs and cores, but only one core is used. Files are stored
on a RAID6 system achieving approximately 800 MB/s. Table 2
shows the write and read results (in seconds) averaged over 5 runs.
All tests are done with a tile shape of [64,64,64] and [32,32,32],
while some tests are done with smaller tile shapes. The table shows
the measured elapsed times and, where interesting, the time spent
in user mode. The datasets used in these tests, fit in the Linux file
cache, so hardly any disk access will be done. To take the cost of
disk access into account, the elapsed times of tests using an array
with shape [4096,4096,4096] (256 GB) are shown in Table 3. The
Linux 10 was measured with the dd command. The last HDF5 test
was killed because it took too long.

It can be seen that the performance of CTDS and HDF5 is about
the same when accessing the array data sequentially (by tile). It
does not differ much from plain, unbuffered Linux 10. CTDS per-
forms better than HDF5 when accessing the array by plane and es-
pecially by line. HDF5 spends a lot of time in user mode. Most likely
the B-tree lookup done by HDF5 is the main culprit. HDF5 degrades
quite severely when writing smaller chunks, probably because its
B-tree gets much larger. The tables also show that access in z is
significantly slower than access in x or y. This is probably caused
by the large memory distance between subsequent z pixels caus-
ing bad memory/cache behaviour. Smaller tiles will alleviate this
problem, which can already be seen from the fact that 32,32,32 re-
quires less user time than 64,64,64. But small tiles will degrade 10,
so an optimum has to be found. Note that Karma supports multi-
level tiling to match the memory hierarchy.

4. Table query language

Radio-astronomical data processing requires flexible data se-
lection. It is common to select visibility data on baseline or spec-
tral band, but selection on other criteria like the number of flagged
visibilities is also very useful. CTDS comes with a query language
(TaqQL) (van Diepen, 2010) to make flexible data querying and ma-
nipulation possible. It consists of a large subset of SQL-92'° with
extensions to operate on arrays. It fully supports nested queries
and aggregation (GROUPBY/HAVING clause). Its main properties
different from SQL are:

e About any operand can be a scalar or an array. A set and a 1-dim
array are interchangeable.

e A very rich set of mathematical, aggregation, and other
functions. Many reduction functions can be applied to arrays.
They result in a scalar if applied to the full array or result in a
smaller array if applied for given axes only.

e Natural support of units and automatic conversion of units. The
Astronomical Data Query Language (ADQL'') proposed by the
International Virtual Observatory Alliance, has limited support
of units by means of its IN_UNIT function. Otherwise the
author does not know of any other query language with unit
support, while it appears to be a useful feature for scientific data
processing.

e Specific operators and functions for cone searching (i.e., search-
ing within a radius around a point at the sky).

e Join functionality is limited. Only joins using the row number
are possible.

e The language can be extended by means of user defined
functions (UDFs). They have to reside in a shared library
that will be loaded dynamically. Two standard UDF libraries
exist dealing with coordinate conversions (for sky directions,
epochs, and earth positions) and dealing with the data in a
MeasurementSet. The latter takes advantage of the knowledge
of the MeasurementSet structure. In this way it is possible to
get, say, the hourangle of the data in the MeasurementSet. This
proved to be very useful for plotting purposes.

CTDS does not have persistent column indices, so TaQL is doing
a sequential scan over a table. Indices are overkill for CTDS because
creating and maintaining them is expensive, queries on a table are
usually not very selective, and scanning a table is very fast and
takes little IO because the metadata are stored closely together.
For example, baseline selection on a MeasurementSet of 1.5 million
rows takes less than 0.3 s on the system mentioned in Section 3.4.
To get an impression of TaQL, some example queries are given
below. A full description of the language can be found in its
manual (van Diepen, 2010).

select gntrue(FLAG) from my.MS
select TIME,gntrue(FLAG) as NT from my.MS
groupby TIME having NT>0

counts the number of flagged visibilities in a MeasurementSet. The
first command for the entire MS, the second command per time slot
where it only selects the time slots having flagged data. Note this
operation is quite fast because the standard CTDS storage managers
compress boolean values to bits.

select from ref.ms tl1, out.ms t2
where any(t1.DATA !~= t2.DATA)

10 http://en.wikipedia.org/wiki/SQL-92.
1T http:/jwiki.ivoa.net/twiki/bin/view/IVOA/ADQL.
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can be used for regression testing. Operator = tests if the data
are equal within floating point accuracy. Note this query is doing a
equi-join on row number.

update my.ms set FLAG=False, FLAG_ROW=False
update my.ms set
FLAG=FLAG| | ampl (DATA) >3+*median (ampl (DATA))

The first command clears all flags in a MeasurementSet.

The second command sets a flag where the data amplitude is too
high. Note that the OR operator is used to keep the existing flags if
already set.

update my.image set map
= map - runningmedian(map,25,25)

subtracts the background noise from an image using the median in
a[51,51] box around each pixel. For a larger image (tens of millions
of pixels) this can become CPU-expensive.

4.1. Selection and iteration

When processing data, it is very convenient to make crosscuts
through the data, to combine data from different datasets, and to
access the data in any order. CTDS has support for all of these.
Crosscuts through the data can be made using a TaQL selection. Not
only can a selection be done on rows, but it can also be done on a
column containing arrays by taking a slice of the column. In this
way one or more polarisations and/or frequency channels could be
selected from a MeasurementSet.

A union of tables can be seen as a special form of selection. In
SQL this is done by means of the UNION clause. CTDS can combine
datasets by making a virtual concatenation of tables with the same
schema. Such a union is a view on the original tables, thus very
cheap to create. It behaves as an ordinary table, so any operation
can be done on it. The CASA Multi-MeasurementSet idiom makes
use of this feature to process the individual parts in parallel, while
it is still possible to handle all data as a single table.

Accessing table rows in arbitrary order can be achieved using
iteration, which can be seen as a specialised form of sorting and
selection. It can be used to step through a table based on the
contents of one or more columns. It is very similar to the GROUPBY
clause in SQL, where each group is a subset of the table, thus a view
on the table for the rows in that group. Iteration is very powerful
and convenient. It is quite heavily used in the CASA package. Also
ad hoc Python scripts use it quite often like:

import pyrap.tables as pt

t = pt.table (Pmy.ms’)

for t1 in t.iter ([>ANTENNA1’,’ANTENNA2’]):
data = tl.getcol(’DATA’)

This example opens a table and iterates through it on baseline. For
each baseline it gets all data. However, iteration can be costly when
accessing the bulk data. If the physical data order does not match
the iteration order, it can result in low performance because of the
many seeks involved. By tiling the data properly, this problem can
be greatly reduced.

5. Comparison with some other packages

Since the creation of CTDS, many other packages and database
systems have been created. Some of these systems are briefly
discussed and, where applicable, compared with CTDS.

5.1. HDF5

HDF5 is a well-known package, developed at the end of the
1990's. It is used in many projects. It supports several storage
methods like a table, group hierarchy, and big arrays.

A group hierarchy is the most commonly used method.
MeasurementSet data could be stored as the hierarchy Band-Time-
Baseline. A drawback of using a group hierarchy is the effort needed
to access the data in another order. To access it in, say, Baseline-
Time-Band order, specific code has to be written as no general
method is available. Different access patterns are regularly needed
in radio-astronomical data processing making this limitation a
serious problem. For example, flagging is usually done per baseline
for a (large) time-frequency window, while calibration requires all
baselines per time/frequency. CTDS does not have this limitation
as discussed in Section 4.1. Another drawback of using a group
hierarchy in HDF5 is that selection on metadata other than the
groups is impossible.

A second option is to store the data in HDF5 tables.'? Selection
on such a table can be done efficiently in Python using the
PyTables'® package, but only on columns containing scalar values.
There is no query interface available in C or C++. A limitation of
HDF5 tables is that the records in the tables are fixed length and
can hold small arrays only.

A final option is to store all data in a single chunked array
with axes time, baseline, frequency, and polarisation. HDF5 only
supports selection by means of slicing, which makes selection
on antenna or other parameters impossible. HDF5 chunk cache
support is limited. It does not recognise access patterns, so sizing
the cache is left to the user. Furthermore, resizing the cache can
only be done after reopening the entire dataset. The performance
tests in Section 3.4 show that HDF5’s chunked data access can be
far from optimal when iterating through a dataset.

HDF5 can support external files as long as the data layout is
regular. Only a simple description of the file has to be passed
to HDF5 to use this feature. CTDS can support any external file,
but requires writing some code as discussed in Section 3.2. It is
not particularly difficult, but extra effort is needed. It would be
worthwhile to develop a CTDS storage manager that can handle
a description file similar to HDF5.

A nice feature of HDF5 is its support of parallel 10, while CTDS
does not support it. However, as discussed in Section 1 radio-
astronomical data processing is usually embarrassingly parallel, so
parallel 10 is hardly needed. In Section 5.4 it is shown that parallel
10 can be added to CTDS using an external data manager.

Another feature of HDF5 is its standard support of chunk
compression, but has the disadvantage that updating a compressed
chunk wastes disk space if the chunk does not fit in the existing
space.

5.2. FITS

FITS has been around for about 30 years. It has grown over
the years and recently tiling with compression has been added
(White et al., 2012; Pence et al,, 2012). The original FITS format
was meant for image data. Later the binary table extension has
been added to make it possible to store table data. These extensions
are used to store visibility data, but there is no standard format.
UVFITS (Greisen, 2012) and FITS-IDI (Greisen, 2008) are both used.
In practice the FITS format is mostly used to transport the visibility
data between data processing packages. The FITS data format is
write-once and a file cannot be extended. Once created, it is not
possible to add rows or columns to a binary table inside the FITS
file. Also no tools exist to query a FITS table.

Price et al. (2014) compare FITS, HDF5, and MeasurementSet
(thus CTDS). The authors mention there are compelling reasons

12 https://www.hdfgroup.org/HDF5/Tutor/h5table.html.

13 www.pytables.org.
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to use HDF5, mainly its support of large data sets and a lossless
compression ratio of 1.65x. As shown in this article the CTDS
format also supports large datasets, but the lossless compression is
an interesting feature. It might be worthwhile to add such a feature
(as a data manager) to CTDS.

5.3. SciDB

SciDB'# is a recent database development aimed at distributed
storage and processing of large amounts of data. It uses an Array
Data Model, where the data are stored in a tiled way, possibly each
tile on a different node. The tiles can overlap to avoid having to
retrieve neighbouring data from another node if operations in a
(small) region are done. An important property of SciDB is that data
are never overwritten. An update results in a new array. It is too
early to say if SciDB is suitable for the storage and processing of
(radio-)astronomical data. It is required to handle ingest data rates
of many GB/s (and much more for the SKA). The Large Synoptic
Survey Telescope (LSST) was involved in the initial phase of SciDB,
but is not anymore. SciDB and MonetDB tried to develop the
ArrayQL' query language (based on SciQL), but no developments
have taken place since 2012.

5.4. ADIOS

The Adaptable 10 System (ADIOS) (Liu et al., 2014), developed
at Oak Ridge, is an advanced data storage package controlled by
an XML file. It has full support of parallel 10 and is very fast, but
requires a lot of memory to achieve high performance. It caches as
many data blocks as possible in memory to avoid disk accesses.

At ICRAR (Perth, Australia) ADIOS has been used in an experi-
mental CTDS storage manager.'® Tests showed its performance is
comparable with the native CTDS storage managers. The real bonus
is that this storage manager makes parallel IO possible for the bulk
data.

5.5. MonetDB

MonetDB (Boncz et al., 2009). is a distributed database system,
developed at the CWI in Amsterdam, The Netherlands. It is the
first database system using column stores and is aimed at fast data
retrieval. Recently they developed SciQL (Zhang et al., 2012) for
array based queries. It is a versatile language, more expressive than
TaQL. MonetDB is not suited for holding interferometric data or
image data because it is not designed to load such amounts of data.
Itis used very successfully to store the sources found in the imaging
pipelines of LOFAR and to do source matching.

6. Conclusions, lessons, and future developments

Over the last decade CTDS has proven itself at various radio-
astronomical institutes as a flexible and reliable data storage
system. It has been used for various dataset types like visibility
data, image data, calibration tables, and log tables. Some datasets
have a size of only a few KBytes, others tens or hundreds of GBytes.
The flexible data selection and access are powerful. TaQL gets
positive feedback from users for its data selection, inspection, and
manipulation functionality, although some people find the TaQL
syntax a bit complex (as well as they find SQL complex).

14 http://www.paradigm4.com.
15 http://www.xldb.org/arrayql.
16 https://github.com/SKA-ScienceDataProcessor/AdiosStMan.

The flexibility of the data managers proved to be very valuable.
Both LOFAR and ALMA had a lot of benefit from the ability of using
external data files. Furthermore, it made it easy to develop new
experimental storage managers like the one based on ADIOS.

Standard CTDS uses Posix 10, but has the option of using
memory-mapped IO. A nice lesson was that memory-mapped 10
works well, but causes tools like top to report high memory usage
when memory-mapping a large table. It leads to questions why the
program uses so much memory.

Some lessons could be learned from using CTDS on a large global
file system like Lustre (Schwan, 2003).

e CTDS supports concurrent table access (multiple readers, one
writer). Lustre supports file locking, but performance can be
degraded severely. Therefore the ability was added to bypass
table locking.

e Many (small) files does not work well on Lustre. The very
recently added MultiFile functionality solves this issue.

The Square Kilometre Array (SKA) telescope is the next
generation radio telescope capable of producing TBytes of data
per second. The analysis and initial design of its Scientific Data
Processing (SDP) software has started in 2014. No decisions
about data format and data storage have been taken yet. The
MeasurementSet serves as a starting point for the interferometric
visibility data model. The data storage system can be anything
ranging from an Objectstore like Ceph,'” the ADIOS system to CTDS.
It will be interesting to see what the outcome is.
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