

National Radio Astronomy Observatory

Atacama Large Millimeter/submillimeter Array Expanded Very Large Array Robert C. Byrd Green Bank Telescope Very Long Baseline Array

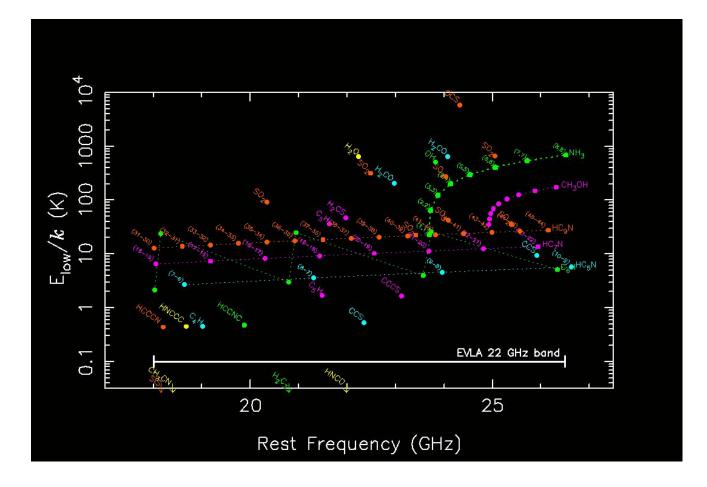
GBT Focal Plane Array K band 7 Pixel

Steven White Program Manager

Personnel

GR I

- Jay Lockman, Project Scientist
- Steven White, Project Manager
- Matt Morgan, Project Engineer
- Galen Watts, M&C Design
- Glen Langston, Scientist
- Sivasankaran Srikanth, EM component
- Bob Simon, Mechanical Design
- Eric Byerton, Noise Calibration
- Gary Anderson, LO Design
- Roger Norrod, System Specifications
- Bob Garwood, Amy Shelton, Joe Masters: Pipeline Software
- Mark Whitehead and Patrick Brandt: M&C Software.
- Dennis Egan, Component Construction


K-Band FPA Development

- Developed science case in series of GBT science workshops.
- Weather limitations requires efficiency improvements.
 - Large proposal back log.
- Technical feasibility and experience with components.
 - Feed, Phase Shifter, OMT, HEMT Amplifier
- True measure of a successful program for the GBT:
 - Competitive instrumentation installed on short time scales and in production use by external observers.

 Instrumentation must be complete with analysis software capable of producing image cubes. (ie data pipeline).

Science Driver : NH₃ Mapping, Molecular Chemistry

Accurate method for determining temperature in star forming regions

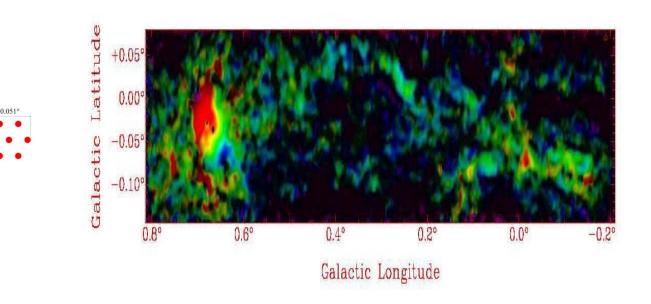
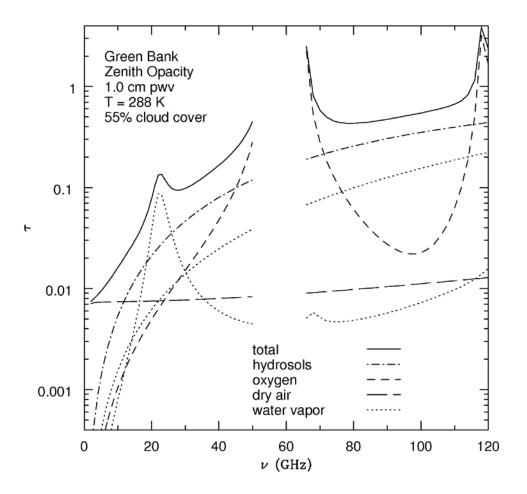



Figure 1: Kinetic temperature map of cold gas via $NH_3(1,1)$ and (2,2) transition observations in the Galactic Center Sgr A* to Sgr B2 region. Image courtesy J.Ott

Green Bank Atmosphere

From 2004 to 2007 statistically 20% K band Observing and 30% 3 mm Observing

Schedule and Cost

- Proposed a ~60 pixel focal plane array.
- November, 2008 received funds as part of the Lockheed Martin track settlement.
 - \$1.2 M Total
 - \$0.19 M Parts
 - \$0.2 M Contingency
 - \$0.83 M Labor
- Compromised to seven pixels with GBT IF system limitations (8 fiber optic links)
- Develop with eye toward expansion while working with schedule and cost constraints
- Seven pixel array construction complete December, 2009
- Production use by November, 2010.

K-band FPA Deliverables

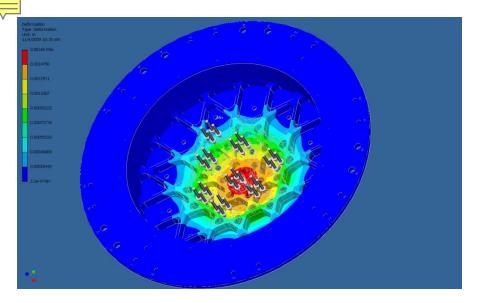
- Frontend
 - Cryogenic Package for Seven Pixel Instrument
 - Seven Dual Circular Polarization K band Pixels
 - Modular Noise Calibration for each Pixel
 - Modular Downconverter for each Channel (14)
 - Monitor and Control Electronics
 - LO Distribution with Doubler for LO1A (synthesizer lacked range)
- Software
 - Package for Engineering M&C
 - Observing Software Manager
 - Data Analysis Pipeline

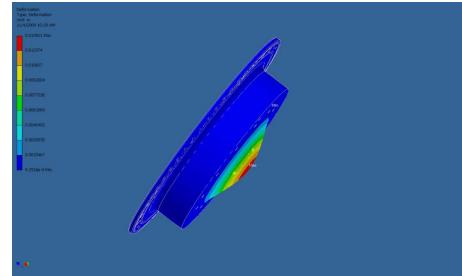
Cost Break Down

- Total for Parts (Dewar, EM parts, Isolator, HEMT Amp, WG parts, Noise Mod, IDM).
 - \$245,000 vs estimated \$190,000
 - Band flatness added cryogenic isolators at output (\$ 20K)
- Labor for Machining: Dewar Hardware, Feed, Phase Shifter, OMT, Thermal Transitions
 - 2.5 FTE years : Machinist
- Engineering Development
 - 1 FTE year Systems Engineering
 - 1 FTE year Electronics Technician
 - 0.2 FTE year Noise Module Design Engineering
 - 0.4 FTE years Integrated Downconverter Design Engineering
 - 0.2 FTE year EM parts (Feed, Phase Shifter, OMT).
 - 0.2 FTE M&C Module Design
- Software Development
 - 0.5 FTE year Software Engineering Monitor and Control.
 - 2 FTE years Pipeline Development
- Scientist
 - 1 FTE year

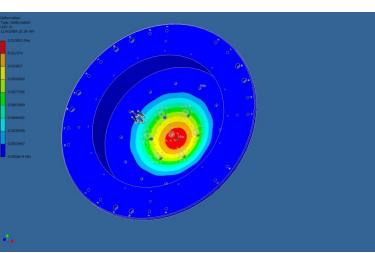
Lesson Learned

- Absolutely need a defined science case!
- Identify stakeholders.
- Fix the design and specifications early to control cost and schedule
- Be flexible with specifications if benefits are justifiable
- Be cautiously bold and confident in abilities.
- Be aware of development costs.
- Build what you know when possible.




Mechanical and Thermal Design

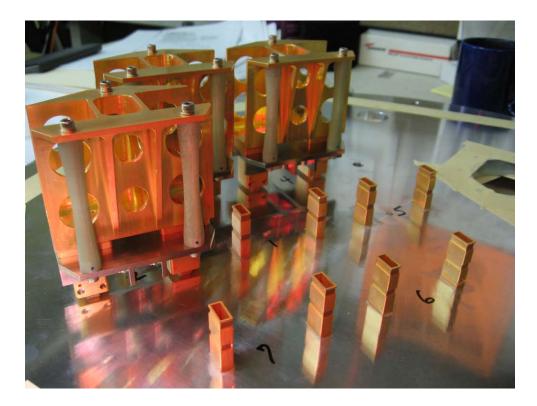
- Solve as many issues as possible to allow expansion.
- Compromised with small dewar to maximize receiver turret options.
- Two thermal gaps reduce thermal loading.
- Sliding waveguide compensates for thermal expansion.
- Reduction of metal for weight control.
- Integrate dewar top plate and mounting bracket.
- Ribbed top plate for strength: expandable to large diameter.



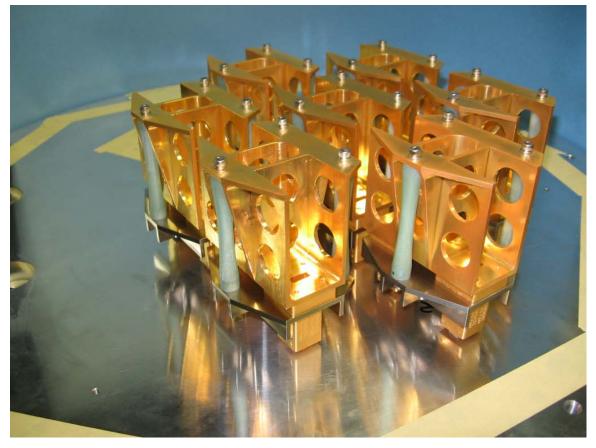
Ribbed design Red: 0.00166" max

Inventor Stress Analysis

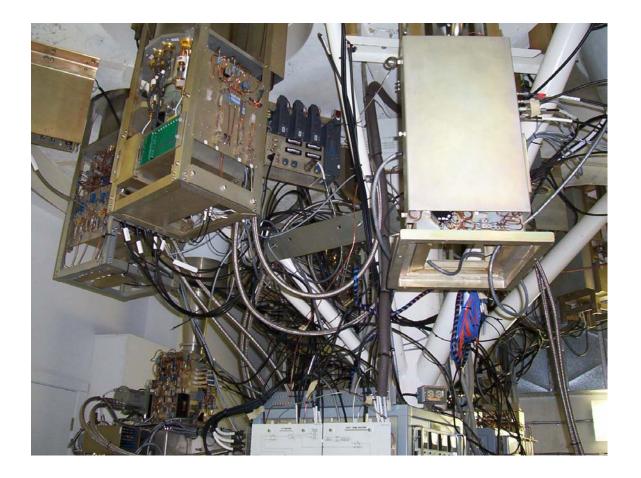
Flat plate design Red 0.0139" max


Top Plate with Feeds

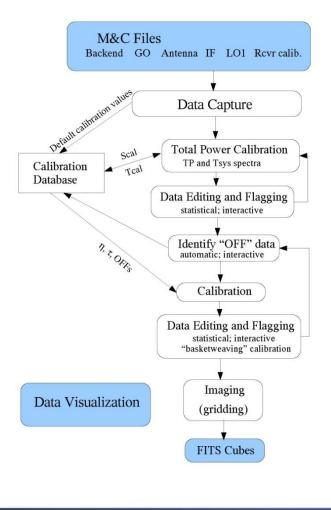
Sliding Waveguide/Thermal Gap Assembly


Thermal Gap and 20 cm SS waveguide: 1.7 Watts 1st Stage Load. 30 cm SS coax: 0.54 Watts 1st Stage Load. Total: 1st Stage 7.7 W; 2nd Stage 3 W.

Contraction from 300K to 15K is ~ 4.1 mm of total 6.35 mm.

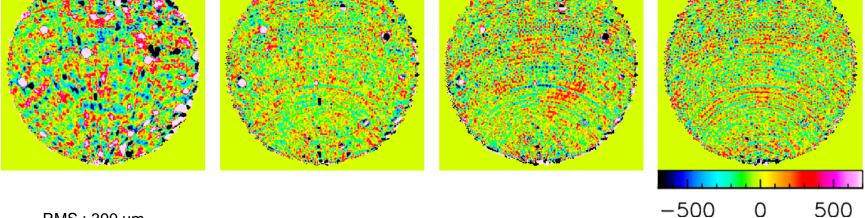


Receiver Turret



Inside Receiver Room

KFPA Pipeline



GBT

Surface Improvements

January 4, 2009	May 3, 2009	May 14, 2009	September 11, 2009
v1.3	v2.81	v2.93	v3.071

RMS : 390 um

RMS: ~200 um @ D < 60 m

What's next for the GBT?

- A W band focal plane array (Conceptual Stage for Prototype).
- Science Case is strong and under development (Full Time Scientist).
- Surface has improved to acceptable efficiencies (Very near goal).
- Precision Telescope Control System program is improving the servo system.
- Needs.
 - Digital IF system
 - Backend (CICADA)
 - Funding (Collaborators)

Thank you for your attention.

Questions?

