

The Q/U Imaging ExperimenT (QUIET) receivers

Coherent Polarimeter Arrays at 40 and 90 GHz

Density fluctuations produce E-modes, B-modes derive from Lensing and Primordial Gravity Waves

Size of B-modes from Primordial Gravity Waves still unknown, Parametrized by Tensor-to-Scalár Ratio *r*

Picture of the Field

Table 1. Future Suborbital CIVID Folarization Experiments.						
		FWHM	Frequency	Detector		
	Technology	(arcmin)	(GHz)	Pairs	Modulator	
US-led balloon-borne:						
EBEX (Oxley et al., 2004)	TES	8	150/250/410	398/199/141	HWP	
Spider (Montroy et al., 2006)	TES	60/40/30	96/145/225	288/512/512	HWP/Scan	
PIPER I	TES	21/15	200/270	2560/2560	VPM	
PIPER II	TES	14	350/600	2560/2560	VPM	
US-led ground-based:						
ABS(Staggs et al., 2008)	TES	30	150	200	HWP	
ACTpol(Fowler et al., 2007)	TES	2.2/1.4/1.1	90/145/217	~ 1000	Scan	
BICEP 2(Nguyen et al., 2008)	TES	37	150	256	HWP/Scan	
Keck Array(Nguyen et al., 2008)	TES	55/37/26	100/150/220	288/512/512	HWP/Scan	
MBI(Korotkov et al., 2006)	NTD	60	100	4	Int.	
Poincare(Chuss, 2008)	TES	84/30/24	40/90/150	36/300/60	VPM	
PolarBeaR(Lee et al., 2008)	TES	7/3.5/2.4	90/150/220	637	HWP	
QUIET I(Samtleben, 2008)	MMIC	20/10	44/90	~100/1000	ϕ -switch	
SPTpol(Ruhl et al., 2004)	TES	1.5/1.2/1.1	90/150/225	~ 1000	Scan	
European-led ground-based:						
BRAIN(Polenta et al., 2007)	TES	60	90/150	256/512	Int.	
C _c OVEP(Piccirillo et al., 2008)	TES	7 515 515 5	07/150/225	2×06	LIW/D	
QUIJOTE(Rubino-Martin et al., 2008)	HEMT	54-24	10-30	34	HWP	

Table 1: Future Suborbital CMB Polarization Experiments.

A Program of Technology Development and of Sub-Orbital Observations of the Cosmic Microwave Background Polarization Leading to and Including a Satellite Mission ASTRO 2010 Decadal Survey White Paper

The QUIET Collaboration

URTHDAY

14 institutes, 5 countries, ~30 people

Caltech, Chicago, Columbia, Fermilab, JPL, KEK (Japan), Manchester, Miami, (Michigan), MPIfR, Oslo, Oxford, Princeton, Stanford

 ~ 1 inch

Produced by JPL based on developments for Planck LFI

Differential Total Power Receivers (MPIfR)

Design and production of differential total power receivers: 2 Q-band, 6 W-band

Measuring ΔT between neighboured beams, phase switching reduces 1/f of amplifiers

- Identification/characterization of unpolarized foregrounds
- Measurements of CMB Temperature and Temperature-Polarization correlations

 \Rightarrow Tx1 - Ty2

• Temperature difference

Sensitive to polarization

Differential Total Power Receivers (MPIfR)

W-band

2 of the JPL modules for the TT assemblies were assembled and tested at MPIfR with Frank Schäfer, Sener Türk

Q-band

• Large phase switch imbalance (mainly W-band)

 Slightly different frequency dependences of the diode responsivities

=> not all diodes simultaneously balanced

=> Use new demodulation scheme which eliminates phase switch imbalances:

Leg A: +-+-+-+-+-+-+-+-+-+-+ 4kHz Leg B: +++++++------ 50 Hz

(Double) Demodulation

- Sampling at 800 kHz
- Switching at 4 kHz
- Blanking of 10%
- Combining to 100 Hz

50 Hz Time streams (in Chile, azimuthal scan, constant elevation)

Window Horn array

Septum Polarizers

Modules, in dewar electronics

Cryostat

3 x 499 pixel 90 GHz 61 pixel 40 GHz 18 pixel 30 GHz

Phase II 2010++

Build large receiver arrays in cryostatsInstall up to 3 telescopes (1.4m) in the Atacama Desert

Receivers for QUIET

84+6^{*} pixel 90 GHz FWHM 12' array sensitivity: 55 $\mu K \sqrt{s}$

array sensitivity: 65 $\mu K \sqrt{s}$

17+2^{*} pixel 40 GHz FWHM 28[\]

* 6 (2) pixels are Total Power Pixels in the W (Q) band array

Phase I, in Chile 2008/09

Q-band array (40 GHz)

Horn arrays from 100 platelets combined by diffusion bonding

Characterization

Assembly and Integration of the arrays in Columbia (Q-band) and Chicago (W-band)

- Two-load tests (liquid Nitrogen, Argon, Oxygen and 300K eccosorb)
- Band Sweeps
- Gain determination and optimization with rotating metal plate reflected from cold load

Automatic optimization

- Per module10 gate/drain voltages
- starting with JPL values
- Downhill-simplex optimization
- 50-150 iterations (coarse)
- ~50 iterations (fine)

Whole array optimized in 10 hours

Sparse wire grids with 0.5-1 inch spacing

Observing site:

Chajnantor Plateau in the Atacama Desert in Chile, 5000m altitude

Extremely dry site Observing year round

QUIET

Rotating wiregrid at the site looking at the sky (via metal plate)

Calibration

Jupiter in Total Power Receivers

Tau A in Polarization

- Elevation nods (10% error)

Temperature:

- Jupiter/Venus/RCW38 (5% error)

Elevation nod in unswitched Total Power channels

Polarization:

- Tau A (10% error)
- Elevation nods (I->Qleakage to 0.1%)
- Moon (angle uncertainty $2^\circ\,$)
- Noise Source (<5% error)
- Wire Grid (1% error on relative gain)

Preliminary sensitivities/element

Performance/Improvements

	Q / W
Sensitivity/element	$0.27 / 0.5 m K \sqrt{s}$
/array	65 /55 µK√s
Noise temperatures:	30 / 90 K
Bandwidth:	<mark>8</mark> / 12 GHz
1/f knees:	20 / 20 mHz

Issues:

- ~5% channels dead/unusable
- 1-2% Leakage (septum polarizer)
- Small bandwidth (hybrid)
- · Higher noise temperatures than expected from LNAs

Improvements for phase II:

- Automatic assembly (automatically assembled modules needed less rework)
- Selection of chips from cryogenic testing (before warm selection)
- Changing from 100nm to 35nm gates (for W-band noise temperatures of ~30K were measured)
- Adapt W-band hybrid design to Q-band design for larger bandwidth
- Exchange detector diodes with ones that require no bias when cold

Galactic center map from Total Power Receivers (2 Q band receivers)

CMB Field (Total Power)

Outlook 2010++

Cryostat window diameter 42 inch 4 coldheads/cryostat

Production of 3x499 W-band elements 61 Q-band elements 18 Ka-band elements

Module mass production at Fermilab (W-band) and Stanford (Q/Ka-band)