

The IAF mHEMT-Technology for low-noise mm-Wave and cryo-MMICs

Matthias Seelmann-Eggebert, Arnulf Leuther, Daniel Bruch, Hermann Maßler, Axel Tessmann, Ingmar Kalfass, Michael Schlechtweg

Fraunhofer Institut für Angewandte Festkörperphysik, Freiburg

Beatriz Aja

University of Cantabria, Santander

From Room-Temperature to Cryogenic Applications

- Status of the IAF-HEMT-Technology :
 - IAF well established as european source for MMICs
 - MMICs from 1 GHz to 500 GHz
 - State of the art RT noise figure
- Motivation:
 - Crosslink with radioastronomy
 - Increasing demand for Cryo-MMICs
 - Scientific Challenge
- Objective:
 - Cryo-Optimization of low noise HEMT-Technology

Outline

- IAF Facilities for High Frequency Electronics
- The IAF mHEMT Process
- MMICs for RT applications
- Process Monitoring
- Assessment of the potential for Cryo-MMICs
- Modelling
- Summary

IAF Expertise High-Frequency Electronics

European Source for HF-devices, -circuits and -modules

Processing Equipment used for the IAF Technology

- 4 x 4" Wafer MBE "GEN 200"
- Jeol JBX 9300 Electron Beam Lithography
- Canon 5000+ wafer stepper

Automatic Batch Tools for

- Wafer Coating and Developing
- **Plasma Etching**
- **Plasma Deposition**
- **Thermal Annealing**
- **Metal Deposition** (Sputtering, Evaporation, Galvanisation)

IAF

IAF mHEMT-Technology: Processing

IAF mHEMT Technology für MMICs

Characteristic features

- 2 Metallization layers
- 2.7 µm Au air bridges
- 225 pF/mm² MIM capacities
- 50 Ω/④ NiCr resistors
- 250 nm CVD SiN passivation
- Back side process (thinning and via-holes)

Transmission environment: Grounded Coplanar

IAF mHEMT Processes

mHEMT

- metamorphic High Electron Mobility Transistor
- Comparison with InP-HEMTs :
 - different substrates
 - identical active layer structure

L_G = 100 nm established

L_G = 35 nm final test phase

IAF mHEMT Technologies: DC- und RF-Parameters

Characteristic Parameters for 35, 50 and 100 nm In_xGa_{1-x}As mHEMTs

	35 nm	50 nm	100 nm	
x (%)	80	80	65	
R _C (Ωmm)	0.03	0.05	0.07	
R _S (Ωmm)	0.10	0.15	0.23	
$R_{g}\left(\Omega/mm ight)$	250	250	400	
I _{D,max} (mA/mm)	1600	1200	900	
V _{BD} (V)	2.0	2.5	4	
G _{m,max} (mS/mm)	2500	1800	1300	
f _T (GHz)	550	380	220	
f _{max} (GHz)	<u> </u>	~600	300	
$I_{\min} = \sqrt{I_{amb}} I_{CE} \frac{f_{max}}{f_{max}}$ für $f \ll f_{max}$				

M.W. Pospieszalski, IEEE Microwave Magazine, vol. 6, no. 3, 62, 2005

RT-Performance of the IAF-LNAs

Module for Imaging Radar System at 94 GHz

- 8-Channel-Radar for W-Band (75...110 GHz)
- Frontend MMIC built from IAF modules:
 - Frequency-Sixtupler: BW = 83...105 GHz
 - Driver Amplifier: P_{out} = 14 dBm
 - 1:8 Power Divider: A = 13 dB
 - Receiver: $G_{conv} = 6 \text{ dB}$, NF = 4 dB

UWB Submillimeter-Wave Amplifier MMIC

- 35 nm gate length mHEMT
- four-stage cascode LNA
- chip size 0.5 x 1.2 mm²

- gain: > 20 dB @ 220...325 GHz
- noise figure: 6.9 dB (sim.)
- power consumption: 50 mW ٠

IAF MMICs for Radioastronomic Receivers

- First cooperation project IAF / MPIfR / IRAM Goal: Cryo-Test of the existing 100 nm mHEMT Technology IAF M39
- **Result: More insight required**
- **Development of four IF amplifiers**

Frequenz [GHz]	Gain [dB]	S ₁₁ , S ₂₂ [dB]	T _N [°K] (*)	P _{DC} [mW]
1-4	>27	< -15, -10	T _N ~12	<15
4-12	>27	< -15, -10	2 <t<sub>N<4</t<sub>	<15
10-18	>30	< -15, -10	5 <t<sub>N<9</t<sub>	<15
20-25	>30	< -15, -10	10 <t<sub>N<12</t<sub>	<15

, you is in

Mappings R732b W149

LNA 4-12 GHz EXT

R729 NiCr Sheet

R729 MIM Capacities

R729 Contact Resistance

R729 Sheet Resistance

PCM Transistor Mapping DC

WORKSHOP 2010

FRS R

PCM Transistor Mapping HF

Performance of IAF mHEMTs at Cryogenic Temperatures

CAY

Performance of IAF mHEMTs at Room Temperature

Performance of IAF mHEMTs at Cryogenic Temperatures

- Test in hybrid amplifiers at T = 15 K
- Equivalent to best InP-based HEMT performance (Cryo3)

Technology Assessment for Cryo-Applications

cryo-performance of Transistors:
 mHEMT (GaAs) and pHEMT-Transistors (InP) comparable !!!!

Passive elements: Cryo-behavior is under investigation Cryo-compatibility? Grounded Coplanar vs Microstrip?

MMICs

First cryo-MMICs designed, fabricated and tested

Low Noise Properties of the HEMT

 \Rightarrow little effect on signal due to high gain and low conductance

Small Signal Model Topology

IAF

Noise Parameters vs. Finger Length

Model: Noise Performance vs. Temperature

F2x40: LG=50 nm; id=150 mA/mm; Vd=1 V; f=20 GHz

On-Going Cryo-mHEMT-Programs

Cooperation Projects with European Partners

Max-Planck-Fraunhofer Cooperation Project:

- Optimization of the mHEMT Process for Cryo-Applications
- dedicated Cryo-Runs

🗾 Fraunhofer

Summary Infrastructure

- IAF
 - Institution for Applied Research (not a foundry!)
 - Quality Management ISO 9001:2000
 - Quasi-Industrial Standards
- MMIC Design
 - ADS Designkits
 - (Cryo-)Model Library
 - Autolayout
- MMIC Processing
 - Epitaxy
 - mHEMT Processing for 100, 50, 35 nm Gates
 - Wafer-Mapping of Transistors and Circuits
- MMIC Packaging
 - Laser Dicing and "Pick and Place" Instrumentation
 - Waveguide Module Design and Fabrication

- State of the art RT mHEMT process
 - NF=2 dB(TN=177 K) @94 GHz (300 K)
- Promising Cryo MMIC results

TN=5K @ 8 GHz (15 K)

- Potential to further process-optimization for cryo applications
- Improvement/Refinement of Cryo-Models

