Receivers & Array Workshop 2010 September 20th, 2010

Recent ETHZ-YEBES Developments in Low-Noise pHEMTs for Cryogenic Amplifiers

Andreas R. Alt, Colombo R. Bolognesi

Millimeter-Wave Electronics Group (MWE) ETH-Zürich, Gloriastrasse 35, Zürich 8092, Switzerland http://www.mwe.ee.ethz.ch/

- Group and Lab Introduction
- ETH HEMT Process & Fabrication
- Device Characteristics
- YEBES Device-Test Results
- Conclusion

Introducing MWE Group

- Established in 2006
- Members (9 Researchers + 1 Prof)
 - 7 Ph.D. Candidates
 - 2 Postdocs
 - 1 Measurement Engineer + 1 Process Engineer

Research Areas

- HEMTs (InP, Group III-N)
- InP/GaAsSb DHBTs
- MOCVD (InP, GaInP, GaAsSb)
- Circuit Design + Characterization

Introducing ETH / FIRST Cleanroom

FIRST – Frontiers in Research Space and Time

- In Operation Since 2002
- 400 m² of Class 10-10'000
- State-of-the-Art Equipment
- Managed by 11 Professors
- Run by 9 perm. Employees

Introducing ETH / FIRST Cleanroom Equipment

- 3 MBEs / MOVPE
- 2 X-Ray / PL Mapper
- 2 Zeiss SEMs / AFM
- 2 Raith 30kV EBLs
- PECVD / RIEs / ICP / LPCVD / ALD
- 3 EB-Evaporation / 1 Sputter System
- Rapid Thermal Annealer
- CV-Profiler / Hall Effect System
- Ellipsometer / Alphastep
- MA6 / MJB3 / DUV Aligners
- 3 Optical Microscopes
- Wet Bench Area / Litho Area

. . .

Introducing ETH / MWE "Measurement Lab"

Measurement Tools & Capabilities

- Vector Network Analyzers (0.045 110 GHz + 140 220 GHz)
- Power Analysis (0.045–110 GHz)
- Spectrum Measurements up to 90 GHz
- Antenna Measurements
- Noise Figure Measurements up to 75 GHz
- Noise Parameters up to 20 GHz
 - Up to 50 GHz by End of 2010
 - Multiharmonic Load-Source Pull by End of 2010

Introducing ETH / MWE "Cryo Lab"

On-Wafer Cryo-System

- > Open-Cycle IHe Cryostat
- Vacuum Level: <10e-6 Torr</p>
- > Temperature Range: 5 K to 400 K (±0.1K)
- > PID Temperature Controller
- Temperature Sensors: Si Diode (Chuck) and Pt Thermometer (Probe Arm)

> Feedthrough:

- RF Cables (K- and 2.4mm-connector)
- DC Wires/Cables (10 pin)

Probes

- Cryogenic RF Probes (K- and 2.4mm connector)
- Multi-Contact-Wedge Probe (9 pin)

INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING (ITET)

Introducing ETH / MWE "Cryo Lab"

Cryo Dewar System

- > Temperature Range: 10 K to 400 K
- > IN₂ shielded IHe Cryostat

> Feedthrough:

- > 4 RF Cables (SMA-connectors)
- > 2 DC Wires/Cables (16 pin)

Probes

Any Probe Type/Size Fitting on the Copper Plate (Ø17cm x 10 cm)

INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING (ITET)

- Group and Lab Introduction
- ETH HEMT Process & Fabrication
- Device Characteristics
- YEBES Device-Test Results
- Conclusion

ETH HEMT History

1991 Development of 0.25µm ETH AllnAs/GalnAs/InP HEMT

Transistor-Process by C. Bergamaschi under Prof. Bächtold

1998 First ESA-Project Involving ETH-HEMTs and

YEBES for Design & Fabrication of X-Band Amplifier

- ... Transistor Supply for Various Projects
- 2006-2008 Process Transfer from In-House Cleanroom to FIRST
- Currently: ESA Ka-Band Amplifier Project with ETH Devices and

YEBES for Hybrid Amplifier Design & Fabrication (S. Halté)

ETH InP HEMT Work Today

• Evolve "Conventional" AllnAs/GaInAs/InP HEMT Technology

• Understand & Improve "Conventional" Devices

- InAs Channel Insets Without Antimonide Related Problems
- "Aluminum Free" GaInP/GaInAs pHEMT Concept for Improved [1]:
 - Reliability
 - High-Frequency Power Performance
 - LF-Noise
 - Cryogenic Performance
 - Breakdown Behavior
 - Improved Etch-Selectivity of GaInAs/GaInP (Recess)

[1] A. Mesquida Küsters and K. Heime, "AI-Free InPBased High Electron Mobility Transistors: Design, Fabrication and Performance," Solid-State Electronics, vol. 41, pp. 1159-1170, 1997

Eldgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

MM-WAVE ELECTRONICS GROUP

INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING (ITET)

"Aluminum free" HEMT Concept

INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING (ITET)

"Aluminum free" HEMT Concept

Goal: Eliminate AllnAs from HEMT-Epi

Sensitive Region, Even when Passivated!

	Pt/Ti/Pt/Ti/Au	Ge/Au/Ni/Au
ap	SalnAs	N _D
arrier	AlinAs	n.i.d.
-doping	AllnAs	N _D
pacer	AllnAs	n.i.d.
hannel	GalnAs	n.i.d.
uffer	AlinAs	n.i.d.
uffer	AllnAs	s.i. Fe-doped
ubstrate	InP	s.i. Fe-doped

"Aluminum free" HEMT Concept

Difficulties to Consider when Replacing AllnAs with GalnP and InP

- Growing Insulating InP-Buffer on InP
- Achieving High Sheet Densities and High Mobilities

while

 Aiming for High Conduction Band Offset

Ti/Au		Ge/Au/Ni/Au
сар	Gal	nAs N _D
barrier	GalnP	n.i.d.
δ-doping	GalnP	N _p
spacer	GalnP	n.i.d.
channel	GalnAs	n.i.d.
buffer	InP	n.i.d.
buffer	InP	s.i. Fe-doped
substrate	InP	s.i. Fe-doped

AI-Free InP pHEMTs Motivation:

AllnAs Can Be Chemically Unstable

- Traps Present (Residual Oxygen, already in MOCVD AI Source)
- Device Instabilities/Non-Idealities (e.g. Kink, Light Sensitivity, etc.)
- Reliability Limiter
- InP Buffer Layer Advantages
 - Al-Free
 - 10x Higher Thermal Conductivity wrt Alloys
- Old Idea: Explored by K. Heime in 1990's
 - $f_T = 150 \text{ GHz}$
 - Claimed to Offer Lower Noise than AllnAs/GalnAs HEMTs
 - Did Not Gain Acceptance

AI-Free InP pHEMTs (ETH-Grown) f_{MAX} > 600 GHz (100 nm)

Peak f_T Bias: $f_T = f_{MAX} = 250 \text{ GHz}$

Peak f_{MAX} Bias: $V_{DS} = 1.5 V$ $f_T = 200 GHz / f_{MAX} = 602 GHz$

Non-Optimized Layers on InP:Fe $\mu = 8,300 \text{ cm}^2/\text{Vs}$ N_s < 1 x 10¹² /cm²

The GaInP/GaInAs AI-Free pHEMT on InP:Fe

is Very Promising!

Typical Device Fabrication Process

INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING (ITET)

Electron Beam Lithography for Nanometric Gates

INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING (ITET)

6 Finger Air-Bridge Device

InP pHEMT (0.1µm x 100µm)

September 20th, 2010

INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING (ITET)

Campers

6 Finger Air-Bridge Device

- Group and Lab Introduction
- ETH HEMT Process & Fabrication
- Device Characteristics
- YEBES Device-Test Results
- Conclusion

DC Device Characteristics @ RT

DC Device Characteristics @ RT

DC Device Characteristics @ RT

- Bias Sweep
 Without Removing
 Pad-Parasitics!
- 0.1μm x 150μm

- Bias Sweep
 Without Removing
 Pad-Parasitics!
- 0.1μm x 150μm

DC Device Characteristics @ 15K vs. 300K

DC Device Characteristics @ 15K vs. 300K

- Bias Sweep
 Without Removing
 Pad-Parasitics
- 0.1μm x 150μm

- Bias Sweep
 Without Removing
 Pad-Parasitics
- 0.1μm x 150μm

- RF Data
 Without Removing
 Pad-Parasitics!
- *F_T* of 272 GHz @
 0.7V V_{DS}, 0.2V V_{GS}
 31mA I_{DS}, 0.12nA I_{GS}

- RF Data
 Without Removing
 Pad-Parasitics!
- Typical Low-Noise Bias Point @ $0.3V V_{DS}$, $0.05V V_{GS}$ $4.3mA I_{DS}$, $0.014nA I_{GS}$ $F_T = 156 GHz$

INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING (ITET)

How Judge on Cryo-Noise Performance -Without Building the Amplifier ?

Cryo3 (4x20μm) vs. ETH (2x75μm) (Not Quite Fair 4F vs. 2F!)

Processing Impact on Device Characteristics

A Single Process Step Can Have a Dramatic Impact on Gate Leakage! (Everything Else Kept the Same)

Processing Impact on Device Characteristics

A Single Process Step Can Have a Dramatic Impact on Gate Leakage!

(Everything Else Kept the Same)

Processing Impact on Device Characteristics

In this Experiment the Processing Change Solely Influenced the Gate Leakage which is a Key Factor for the Noise Performance!

- Group and Lab Introduction
- ETH HEMT Process & Fabrication
- Device Characteristics
- YEBES Device-Test Results
- Conclusion

Result Considerations

- CRYO3 is Considered the Best Cryo-Transistor Ever Measured
- ETH Devices Presented Here are not Yet "Optimal":
 - Source-Drain Distance is 2μm; Better Performance Expected for 1μm
- Noise Characterization Over 16–26 GHz by YEBES
- YEBES Used ETH Devices in the First Stage of their YK22 004

Amplifier, Comparing Against HRL and NGST Devices

YEBES Amplifier Results @ 300K

INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING (ITET)

YEBES Amplifier Results @ 15K

ETHZ-YEBES Measurement Results

- Noise Results Obtained with ETH Devices Almost Reach CRYO3
 - The Average in-Band Noise is Slightly Higher than CRYO3
 - The Minimum Noise is in Some Cases Slightly Better than CRYO3
- Gain is Significantly Higher for ETH Devices
- Very Low Gate Leakage at Cryogenic Temperatures

- Group and Lab Introduction
- ETH HEMT Process & Fabrication
- Device Characteristics
- YEBES Device-Test Results
- Conclusion

Conclusion

- ITAR Complicates HEMT Procurement Outside US
- ETH Technology as EU Source of High-Performance Devices
 - Radio-Astronomy & Deep Space Network
 - Telecommunications
 - Research Applications
- MWE / ETH Interested in Collaborative Projects
 - Secure/Expand EU Source for Strategic Technology
 - Extend Technological Limits

Eldgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

MM-WAVE ELECTRONICS GROUP

INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING (ITET)

Carriers

