A 7-Element K-Band Focal Plane Array

for the Green Bank Telescope

Multi-Pixel Camera Receivers

Gary Anderson, Eric Bryerton, Dennis Egan, Bob Garwood, Glen Langston, Jay Lockman, <u>Matt Morgan</u>, Roger Norrod, Bob Simon, Sivasankaran Srikanth, Galen Watts, Steve White, and many more...

> Atacama Large Millimeter/submillimeter Array Expanded Very Large Array Robert C. Byrd Green Bank Telescope Very Long Baseline Array

Robert C. Byrd Green Bank Radio Telescope

- 100 Meter Diameter
- Unobstructed Aperture
- Offset Gregorian Optics
- National Radio Quiet Zone (NRQZ)
- Large, clean, focal plane lends itself naturally to focal plane arrays.

Why Build the First FPA at K-Band?

NRAC

3

۰.

Why Build the First FPA at K-Band?

۰.

Why Build the First FPA at K-Band?

- We already had many of the parts project was proposed on a low budget (\$1.2M) and fast timetable (3 yrs) based on the premise that many existing components and systems could be reused.
- Can use existing telescope infrastructure (power supplies, LO synthesizers, fiber optic link...)
- Served as a good starting point for a long-term FPA program.

Feedhorn Arrangement

NRA(

- 36" mounting ring on the receiver turret would support about 60 K-Band feedhorns.
- 3.45" spacing (~2.5 HPBW)
- Original program:
 - engineering development for 60-pixel array
 - construct 7-pixel prototype.

Effect of Shrinking the Feedhorn

Frequency [GHz]	Beam Spacing [HPBW] 3.4" feed	Beam Spacing [HPBW] 2.8" feed
18	2.3	2.0
22	2.7	2.4
26	3.2	2.7

System Baseline Specifications

Specification	Requirement
Frequency Band	18-26.5 GHz (complete K-Band coverage) Can tune up to 27.5 GHz
Instantaneous RF Bandwidth	1.8 GHz (front-end)
Number of Beams	7
T _{RX} (each beam, not including sky)	<25K (75% of band) <35K (entire band)
Aperture Efficiency	>55% (any pixel)
Polarization	dual, circular (axial ratio <= 1dB)
Polarization Isolation	>25 dB
Pixel-to-Pixel Isolation	>30 dB
Headroom	>30 dB (to 1 dB compression point)

۰.

. .

Bandwidth Limitations

Sub-Assembly	Total Potential Bandwidth	Comments
cold-electronics (feed, OMT, LNAs)	>8.5 GHz	degrades outside of 18- 26.5 GHz
warm analog electronics	1.8 GHz (up to 8 dual- polarized beams)	limited by existing IF transmission system, <u>requires multiplexing</u>
digital electronics	800 MHz (4 beams) 50 MHz (8 beams)	limited by existing spectrometer

System Schematic

۰.

Compact Corrugated Feedhorns

3.4" O.D. Feedhorns

22 GHz Telescope Beams

Compact Corrugated Feedhorns – I3 dB Edge Taper

E-Plane Pattern

H-Plane Pattern

Thermal Gap

- 0.543" circular waveguide
- 0.010" gap with choke groove
- upper half at 300 K, lower at 15 K
- hollow, shaped G10 supports
- optimized for weight, strength, and thermal isolation
- Cuming Microwave PS-102 foam for vacuum seal
- Cuming Eccobond 45 epoxy
- 3-mil Kapton vapor seal

Quadrature Phase Shifter and OMT

Noise Calibration Source Integrated With Coupler

KFPA Will Use Existing EVLA Low-Noise Amplifier Design

Gapped WR42 Sliding Waveguide Output Transition

- 0.360" maximum travel
- Δ length on cool-down: ~0.144"
- Stable at final temperature
- Chomerics 1285 conductive elastomer
- Ecco-foam PS102 with 3 mil Kapton

Downconverters – IF Multiplexing

- Existing GBT IF transmission system limited to 8 channels with 8 GHz tunable bandwidth (processed in I.8 GHz windows)
- To process 14 dual-polarized pixels requires two IF's to be multiplexed onto the same fiber.
- Two different downconverters are needed.
- IF path and spectrometer upgrades are planned future improvements.

Downconverters

NRAC

. .

Downconverter Performance

Conversion Gain -- IDM2 Serial No. 2, Channel B

- RF Bandwidth = 8.5 GHz
- IF Bandwidth = 1.8 GHz
- LOI Power = -0.5±4.5 dB
- LO2 Power = $+3\pm 5$ dB
- Conversion Gain = 30 dB
- Gain Control = $\pm 12 \text{ dB}$
- Compression Point > +10 dBm
- Image Rejection > 30 dB
- Channel Isolation > 30 dB

30-35

25-3020-25

15-20

10-15

5-10

Downconverter Size Dominated by DC Control Functions

PCB Side

MMIC Side

IF Multiplexer

NRÃO

22

۰.

LO Distribution

M&C Through I²**C** Bus to Minimize Wiring and Vacuum Feedthrus

Existing Spectrometer Modes

Spectrometer [BW]	Beams [#]	Polarizations	Windows [#]	Channels [#]	Comments
800 MHz	4	2	1	8	Tunable pairs;L1/R1 or L3/R3;L2/R2 or L4/R4;L5/R5 or L7/R7;L6R6
200 MHz	4	2	1	8	Tunable pairs;L1/R1 or L3/R3;L2/R2 or L4/R4;L5/R5 or L7/R7;L6R6
50 MHz	7	2	1	14	Seven tunable polarization pairs. (L1/R1L7/R7)
50 MHz	4	2	2	16	Four selectable beams, one tunable polarization pair per beam; two spectral windows.
50 MHz	2	2	4	16	Two selectable beams, one tunable polarization pair per beam; four spectral windows.
12.5 MHz	7	2	1	14	Seven tunable polarization pairs. (L1/R1L7/R7)
12.5 MHz	4	2	2	16	Four selectable beams, one tunable polarization pair per beam; two spectral windows.
12.5 MHz	2	2	4	16	Two selectable beams, one tunable polarization pair per beam; four spectral windows.

۰.

. .

Pipeline Under Development

- Standard observing modes
- Meta data to capture user intent
- Interactive and statistical data flagging
- Parallel processing of beams
- Visualization of intermediate data
- Not just for KFPA useful for data from other GBT backends as well.

Single-Pixel Prototype

- Single feed, dual polarization
- 65" tall
- 13 lbs cooled weight, 150 lbs total weight
- CTI 350 refrigerator, 4 hr cool down
- Aluminized Mylar for radiation shield
- Installed in a 24" dia turret hole
- Will keep for use as a test bed

Laboratory Testing – Noise Temperature

GBT K-band vs KFPA, LCP

Laboratory Testing – Stability Checks

Alan Variance and PSD

NRAC

Repeated 90s Baselines

Single Pixel On Telescope – HC7N and Ammonia I-I Transitions

Single Pixel on Telescope – Taurus Molecular Cloud (I second integrations)

NH3

HC7N

31

Design Issue – LO Spurs

NRAC

- IF Multiplexing forced two-stage mixing approach for one IDM
- IF plan designed to avoid spurs up to 5th order
- Higher-order spurs inevitable at some level we found one that was 14th-order! (3LOI-IILO2)

First Solution: Filtering

Better Solution: Tune to Avoid

Incommensurate Tuning

NRAC

Commensurate Tuning

Best Solution: Don't Use Two LO's!

Especially for

- an integrated receiver
- a single-dish telescope
- a focal-plane array (distribution losses require LO power saturation to ensure uniformity of gain)

Seven-Pixel Array

- Dual polarization, 14 IF outputs
- Overall size 65" tall, 23" dia
- Designed for 24" dia turret hole
- 90 lbs cooled weight, 280 lbs total
- CTI 350 refrigerator
- One pressurized radome to cover all feeds
- Reinforced dewar top and bottom plates. MIC6 cast aluminum for machining stability.

Project Timeline

2/7/2009

1/31/2010

4/31/2010

11/8/2010

- 4/16/2007 Initial Proposal
- 10/4/2007 Proposal Accepted
 - 2/28/2008 Conceptual Design Review
 - 8/22/2008 Single Pixel Construction Complete
 - I 2/3 I/2008 GBT and Laboratory Tests Complete
 - I/3I/2009 Critical Design Review
 - Seven-Pixel Construction Complete
 - System Integration and Lab Tests Complete
 - Telescope Tests Complete
 - Commissioning Complete

Future Work: Sixty-Pixel Array?

Probably not.

- Many challenges (size, weight, thermal, power dissipation, maintenance requirements, etc.)
- Would require more integration of cold electronics
- Latest from Science team is that most objects of interest are no bigger than 7-beam footprint anyway.

Future Work: A W-Band (3mm) FPA

- There is great interest on many fronts for a W-Band Heterodyne Focal Plane Array on the GBT
- 100 elements?
- 65-90 GHz or 85-115 GHz?
- Could make use of a new MMIC amplifier with 23K minimum noise at 85 GHz (E. Bryerton, using NGST 35nm InP process)
- MUST include greater integration of cold electronics.

Danke!

. .

۰.