Packaging (and associated) Technologies for Large Arrays

T. Gaier

Overview

- Large Array Requirements
- Accommodating New Technologies
- Packaging Technologies
 - Single function Modules: SEQUOIA, WMAP etc (N=10-50)
 - Multi-function modules: QUIET, MIMRAM, MAS (N=100-500)
 - New Approaches: Wafer level packaging (N=500-5000)

Array Receiver Requirements

Arrays are needed when:

- 1) Individual detector noise approaches fundamental limits InP HEMTs, SIS
- 2) Large areas (compared to resolution) needs to be observed continuum and spectral line surveys, CMB, Earth Science

Receiver Array Requirements:

- Large array integration must be facilitated- interconnections, integration, bias and readout
- Single pixel performance needs to be maintained- beam integrity, noise performance etc
- New Technologies need to be accommodated- Incremental improvements need to be accounted for
- The parts have to be testable or highly repeatable

Evolution of Technology

- Evolution has been substantial for high frequency (>100 GHz) devices
 - 1998 Room temp NF = 3dB @90 GHz, 6 dB @180
 GHz
 - 2010 Room temp NF=2.5 dB @90 GHz, 3 dB @180
 GHz

Recent G-Band Results

90 GHz 35 nm results

Wafer Probe Noise Measurement-40 GHz

Cryogenic Expected in Waveguide Housing

New High Frequency Breakthroughs

- •In a Spontaneous Concept RTD from 2007, we designed MMICs in the 400-500 GHz range. At the time, there was no way to test them because the frequency is outside the bandwidth of any wafer probe capability
- Under this program, Andy Fung, together with Greg Boll of GGB, developed and the very first wafer probe measurements up to 500 GHz.
- We have used the probes to measure the 2007 circuits, and have found very high gain up to 500 GHz (~10 dB at 475 GHz with 40 GHz bandwidth)
- Cryogenic noise testing of these chips is beyond the current scope of this program, due to the need for developing a low loss waveguide package capable of being cooled.
- A new RTD Topic has been submitted (PI Samoska) "MMIC Low Noise Amplifier Modules up to 700 GHz— A World Record Enabling Technology" to package and test these amplifiers cryogenically, by fabricating low loss waveguide transitions in the MDL.

MMIC LNA with 10 dB gain from 445-490 GHz

Progress in 10 years?

HAMSR Microwave Sounder on Global Hawk

Bjorn Lambrigtsen, Shannon Brown - JPL

Thermodynamic structure

- -T(z), q(z), L(z) clear & cloudy
- -Rain rate, IWP (experimental)
- -1 km V x 2 km H in 40-km swath
- -25 channels: 50, 118 and 183 GHz

Multiple platforms

- -ER-2 (CAMEX-4, TCSP)
- -DC-8 (NAMMA)
- Global Hawk (ready late 2009)

Convective structure

- Radar-like reflectivity
- 1 km vert.res/40 km swath
- Conv.intens., precip(z), ice(z)

New receiver technology

- 183 GHz receiver upgraded with LNA developed under NASA/ESTO/ACT
- Noise reduced by an order of magnitude
- Defines new state-of-the art

Single-function modules

Systems are built from individual blocks, typically serving a single function.

Advantages: simple design, easy testing, cryogenic components can be limited to those requiring cooling, less subject to yield issues since rework is inexpensive.

Disadvantages: complex integration, larger chains, more interconnects

Multi-function multi-chip packaging

Moderate integration:

Systems are still complicated to integrate but have fewer connections.

Components retain a large degree of RF testability. RF gain is typically limited, making design for stability easier

Multi-function multi-chip packaging

Highly integrated:

Large systems are easier to integrate.

Components retain minimal RF testability. RF gain is typically high.

Highly dependent upon device yield and repeatability.

Heterogeneous Integration Example

- Integrated RF front end module with antenna
 - PA (GaAs HEMT)
 - 3 bit phase shifter (GaAs HEMT)
 - Interconnections (ICICs)
 - Antenna

WLP bottom side WLP top side (antenna)

(Nearly) Idealized Lifecycle

QUIET W-Band Lifecycle

Cryogenic Testing-CIT Probe Station

Cryogenic Probe Station

Cryogenic Probe Station

