

OPTICS OF SINGLE BEAM, DUAL BEAM & ARRAY RECEIVERS ON LARGE TELESCOPES

JAMES W LAMB, CALTECH

OUTLINE

- Antenna optics
 - Aberrations
 - Diffraction
- Single feeds
 - Types of feed
 - Bandwidth
 - Imaging feeds
- Dual feeds
 - Beam switching
 - Nutating secondary
- Focal plane arrays
- Aperture plane arrays
- Conclusion

ANTENNA ABERRATIONS

Numerical aperture: N = F/D

RMS path error

Astigmatism:

$$p_{rms} = 2\frac{\Delta x^2}{d} \frac{1}{(4N)^3}$$

Coma:

$$p_{rms} = \frac{\sqrt{2}}{6} \Delta x \frac{1}{(4N)^3}$$

Efficiency loss:

$$\left(\frac{2\pi}{\lambda}p_{rms}\right)^2$$

COMA vs. ASTIGMATISM

<u>ALMA antenna</u> D = 12 m f = 4.8 m d = 750 mm M = 20 F = Mf = 96 mN = F/D = 8

surface error: 20 µm

<u>Note</u>

Ritchey–Chrétien

telescopes designed to reduce **coma**, but they degrade **astigmatism**

ANTENNA PATTERN

<u>SZA antenna</u> D = 3.5 m f = 1.4 m d = 350 mm $\lambda = 1 \text{ cm}$

- Focal surface
 - Petzval surface
 - Half sum of optical element curvatures
 - Surface has radius of curvature ~2 x secondary radius of curvature
 - Single offset pixel refocus secondary (e.g., ALMA)
 - Pixel array place on Petzval surface
- Polarization
 - Offset feeds have beam separation between LCP and RCP

Figure 4: A microscope photograph of our SIS mixer chip. Note the microstrip radial stubs, quarter–wave transformers, and the two–junction tuning circuit.

Twin-slot Mixer Beam Pattern 690 GHz

19-Sep-2010

MMIC & Array Rx Workshop

WAVEGUIDE FEEDS

- Rectangular
- Conical
- Diagonal
- Potter (dual-mode)
- Dielectric loaded
- Quad-ridge
- Corrugated ('scalar')
- Smooth-wall

19-Sep-2010

8

CORRUGATED HORN

- 'Gold Standard'
- Properties
 - Circularly symmetric pattern
 - Low sidelobes
 - Low cross-pol
 - ~40 % bandwidth
 - Low VSWR
- Variants
 - Diffraction limited
 - Wideband
 - Profiled
 - Dual-band
 - Ring-loaded slots

. . .

GAUSSIAN BEAM PARAMETERS

- Fundamental mode captures propagation properties of **all** modes
- Changing structure with propagation due to **only** phase slippage between modes
- Waist to far-field, $\phi_0 = \pi/2$: Fourier transform
- Between confocal planes: Fourier Transform
- $\phi_o = \pi$: two FTs -> image (inverted)

CORRUGATED HORN AND GAUSSIAN BEAM

- Aperture phase error -> 'diffraction limited' or 'wideband'
- Aperture close to waist, or in far-field of GB
- Aperture at confocal surface -> optimum gain horn

T.-S. Chu, "An imaging beam waveguide feed," *IEEE Trans* Antennas and Propagat., vol. AP-31, no. 4, pp. 614–619, July 1983.

FOCAL PLANE FIELDS: COUPLING

- Integrate over source and horn beams to obtain coupling
- Diffraction limited horn
 - Matches central Airy lobe well
- Imaged horn
 - Matches central and first sidelobe of Airy pattern well

FOCAL PLANE FIELDS: TRUNCATION

- Effect of truncation depends on location
 - effect worst near (image of) focal plane
 - effect least near (image of) aperture plane
- Clear diameter of 5 beam radii is conservative

EXAMPLE OF FREQUENCY-INDEPENDENT OPTICS

SEST frequency-independent optics

DUAL-BEAM SYSTEMS

- Principle
 - Rapidly switch between two close positions on sky
 - Difference removes
 - atmospheric fluctuations
 - beams overlap in atmosphere (near field)
 - v. important for (sub-)millimeter
 - Rx gain fluctuations
 - Dicke switching
- Considerations
 - Frequency
 - atmosphere: 1-10 Hz
 - receiver: 1 Hz 10 kHz
 - Beam throw: <1 deg
 - Single dish—not required for interferometry

IMPLEMENTATION: WITH FEEDS

IMPLEMENTATION: USING SECONDARY

20

DIFFRACTION AT SECONDARY

- Adds ground spillover noise
- Increases with
 - feed offset
 - secondary motion
- Cancels for symmetrical beam switching
- Nutating secondary and focal plane array
 - combine offset and switching effects
 - large imbalance
 - reduce with shield
 - primary
 - secondary

FOCAL PLANE ARRAY CONSIDERATIONS

- Number of pixels
 - Cost
 - Backends
 - Focal plane size
 - Aberrations
- Beam spacing
 - ~2.5 beams minimum horn spacing
 - Heterogeneous interferometer arrays?
- Diffraction limited or imaged feeds?
- Image de-rotation (Az/El antennas)
 - Rotate in optics
 - Rotate receiver
 - Rotate in software

- Originally Schottky
- Retrofitted with SIS

IRAM 9-BEAM SIS RECEIVER

PHASED ARRAY FEEDS

PHASED ARRAY FEEDS

APERTURE PLANE FEEDS

- Phased array feeds sample complex field
 - Can be placed anywhere along beam
 - In aperture plane amplitude uniform, phase varied
- Can place individual feeds in aperture plane
 - Use: e.g., CARMA correlate subapertures on 10-m antennas with 3.5-m antennas

CONCLUSIONS

- Radio antennas capable of wide field imaging
- Imaging often limited by focal plane size
- Many feed designs to choose from
 - corrugated horn is probably still the best
- Large arrays may compromise single pixel performance
- Synthesized feed arrays may become practical
 - large digital back-ends will help