MPIfR sub-millimeter heterodyne arrays

Outline: Introduction CHAMP+ system-overview system performance > LAsMA system-overview

<u>Team:</u>

R. Güsten^a, A. Baryshev^b, A. Bell^a, A. Belloche^a, U. Graf^c, H. Hafok^a, <u>S. Heyminck^a</u>, S. Hochgürtel^a, N. Honingh^c, K. Jacobs^c, C. Kasemann^a, B. Klein^a, T. Klein^a, A. Korn^a, I. Krämer^a, C. Leinz^a, A. Lundgren^d, K. Menten^a, K. Meyer^a, D. Muders^a, F. Pacek^a, D. Rabanus^d, F. Schäfer^a, P. Schilke^c, G. Schneider^a, J.Stutzki^c, G. Wieching^d, A. Wunsch^a, F. Wyrowski^a

Institutes:

- ^a Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany;
- SRON Netherlands Institute for Space Research, Postbus 800, 9700 AV Groningen, Netherlands;
- ^c I. Physikalisches Institut der Universität zu Köln, Zülpicher Str. 77, 50937 Köln, Germany;
- ^d APEX, European Southern Observatory, Casilla 19001, Santiago 19, Chile

Why heterodyne Arrays ?

> enhance the productivity of the telescope facility

Atmospheric sub-millimeter windows are wide open from exceptional good sites like Chajnantor / Chile:

excluding the Bolivian winter (mid of January to end of March)

- 50% of the time < 1.0 mm pwv</p>
- 25% of the time < 0.6 mm pwv</p>

prime weather conditions < 0.3 mm pwv

→ but still time of excellent weather is very limited

but performance of each pixel must be close to the one of an optimized singe pixel receiver

History

>CHAMP(1999 – 2003)

- 16 pixel array @ 460 GHz
- operated at the CSO
- MACS backend

MACS (MPI Array Correlator System)

- 32 Input-bands with1024 spectral channels each
- 3-Level sampler
- Input level 0 dBm
- Data-rate 2Mb/s @ 100ms dump-time

CHAMP during operation at the CSO (1999-2003).

CHAMP+: Instrument description

- two 7-pixel sub-arrays (624 716 GHz and 785 935 GHz)
 - operating on orthogonal polarizations allows for parallel observations
- fixed tuned DSB SIS-mixers (provided by SRON, TU Delft)
 - mixer instant. bandwidth: 4 8 GHz
- main optics cooled to 15 K
- SSB-filter for both sub-arrays
 - image side-band terminated at 15 K
- quasi-optical LO-injection
 - Martin-Puplett interferometer as diplexer
 - phase-gratings for LO-power distribution
- image de-rotation by rotating the receiver dewar
- backend/IF processes 2.8 GHz instantaneous bandwidth for each pixel
- fully remote controlled operation

CHAMP+: Footprint

fully sampled maps with two scans only

CHAMP+: System overview

Max-Planck-Institut

CHAMP+: Cold optics (15K)

Multi Pixel Camera Receiver

Max-Planck-Institut

CHAMP+: SSB-filter

Frequenc y	Side-band	Filter-position	Pixel 1	Pixel 2	Pixel 3	Pixel 4	Pixel 5	Pixel 6	Pixel 7
[GHz]		[mm]	[dB]						
630	LSB	3.240	-17,7	-24,4	-16,6	-21 ,0	-27 ,1	-34,7	-23,3
650	USB	3.274	-16,1	-25,4	-14,6	-23,5	-24 ,4	-28,3	-25,4
691.47	LSB	3.118	-16,6	-24 ,6	-15,3	-27 ,6	-21 ,6	-25,5	-28,3
806.65	USB	3.118	-16,9	-22,1	-16,3	-21,7	-29,6	-23,6	-26 ,6
850	LSB	3.150	-15,1	-20 ,9	-16,3	-26,7	-22,8	-25,4	-27 ,3
921.8	LSB	3.153	-15,4	-21,5	-19,8	-25,8	-23,3	-19,0	-19,4

Multi Pixel Camera Receiver

CHAMP+: LO-system

LO-chains are a spin-off from HIFI/Herschel development

- three LO-chains to cover the RF-bandwidth:
 - 630-710GHz
 - 790-836GHz (lower)
 - 840-936GHz (upper)
- multipliers are cold (<130K)
 - increased lifetime
 - better performance
- using compact design with commercial Stirling-cooler
- LO-splitting using collimating Fourier gratings (CFGs):
 - single quasi-optical device
 - high efficiency (>77%)
 - easy to fabricate

CHAMP+: SIS-Mixers (SRON)

Mixers assembled to the mixer-mount

Mixer electronics with connector-block

Magnet block

S.Heyminck – MPIfR 16.11.2009

CHAMP+: Array-FFTS

Bandwidth: 32 x 1.5 GHz = 48 GHz (option 58 GHz) Spec. channels: 32 x 8k = 256k channels @ 212 kHz

S.Heyminck – MPIfR 16.11.2009

Beam pattern of the low-frequency array:

- obtained on Mars using total power scanning mode
- diffraction limited
- beam-shape as expected (clean down to -16dB)

SSB receiver noise temperatures of the central pixel:

- > Y-factors measured using the internal cold load
- > do not include losses due to the cryostat window.

(for reference the atmospheric transmission is superimposed)

CHAMP+: System stability

CHAMP+: Conclusion

- CHAMP+ is successfully operated at APEX for nearly three years now
 - meets all design requirements
 - offers very good performance throughout the whole tuning range
 - further optimizations still possible and ongoing

CHAMP+ in combination with APEX now offers unique observing opportunities in the high submillimeter atmospheric windows

LAsMA: Instrument description

Large <u>APEX</u> <u>sub-Millimeter</u> <u>Array</u>:

- 7-pixel at 280–375 GHz and 7-pixel at 380–510 GHz (prepared for a 19 pixel extension in the higher frequency band)
 - operating on orthogonal polarizations allows for parallel observations
 - hexagonal beam-pattern
- fixed tuned DSB SIS mixers (provided by the University of Cologne)
 - mixer instant. bandwidth 4-12GHz (goal)
- frequency-independent optics (Gaussian telescope setup)
- SSB-filters for both sub-arrays
 - image side-band terminated at 20K
- quasi-optical LO-injection
 - phase-gratings for LO-power distribution
 - coupling foil for LO-injection in both bands
- K-mirror as image de-rotator
- > full remote controlled
 - optical filters, mixer control, LO-systems, and IF
- using of the CHAMP+ IF-system and A-FFTS at the beginning
 - Individual IF and FFTS-System with wider bandwidth as upgrade

LAsMA: Optical path

LAsMA: K-Mirror

- 3 flat mirrors only
- allows for >360° image rotation
- no cable-twisting
- quasi monolithic fabrication
 - no internal adjustment required
- aperture covers the full field of view of the Nysmith cabin

LAsMA: LO power splitting

Simulated intensity distribution of the LO-beam after passing the CFG. Contours in steps of 10% of the maximum intensity.

LAsMA: Mixers (KOSMA)

integrated amplifier

horn antenna

magnet

Right hand side: 3D CAD model of the LAsMA mixer assembly. The front part with the SIS-device and the horn antenna is provided by the KOSMA group. The amplifier Part is a contribution from MPIfR

- fixed-tuned DSB-SIS mixers
- baseline for the RF-bandwidth
 - 280 375 GHz
 - 380 510 GHz
- goal for the DSB noise-performance
 - 40 K for 345 GHz, 60 K for 460 GHz
- internal superconductive magnet
- IF-bandwidth: 4–12GHz
- integrated low-noise amplifier (provided by MPIfR)

LAsMA: Electronics

- compact multi-pixel electronics
 - will directly be attached to the LAsMA dewar
- fully computer-controlled
 - remote access via Ethernet incl. measurement of IV-curves
 - but oscilloscope online monitoring is also possible
- usable also for single pixel receivers
- design ready, mass-production started
 - successfully tested with a 460 GHz SIS-mixer in the Lab

LAsMA: mixer electronics

Max-Planck-Institut für Radioastronomie

- each channel has its individual electronics
 - easy to debug
 - system upgrade easily possible
- highly stackable
 - bus system (PC-connection, power, analog for IVcurve)
 - individual mixer connection and pre-amplifier
 - easy to fabricate (mass production)
- one card only includes
 - mixer-BIAS
 - magnet current supply
 - MMIC BIAS
 - heater supply

mixer electronics

LAsMA: Outlook and timeline

- 7-Pixels at 460GHz plus 7-pixels at 345GHz
 - will offer outstanding mapping capabilities
- LAsMA will be an important addition to CHAMP+
- installation at the APEX telescope is foreseen in late 2010

Distribution of warm carbon monoxide CO(4-3) as measured towards the Horsehead nebulae with the precursor instrument to CHAMP⁺.

Conclusions

covering all important sub-millimeter windows accessible routinely with APEX