Cosmic Microwave Background Polarization Receivers: QUIJOTE experiment

E. Artal⁽¹⁾, L. de la Fuente⁽¹⁾, B. Aja⁽¹⁾, J.L. Cano⁽¹⁾, E. Villa⁽¹⁾ R. Hoyland⁽²⁾, J.A. Rubiño⁽²⁾, R. Génova⁽²⁾

- (1) Universidad de Cantabria, Santander (Spain)
- (2) Instituto de Astrofísica de Canarias, La Laguna, Tenerife (Spain)

Multi Pixel Camera Receivers, RadioNet- FP7, 2nd Engineering Forum Workshop (Bonn, 16-17 November 2009)

QUIJOTE CMB experiment overview

- <u>Q-U-I</u> <u>JO</u>int <u>TE</u>nerife (Stokes parameters Q, U and I)
- Cosmic Microwave Background (CMB) polarization receivers
- To obtain five polarization maps in the frequency range 11- 30 GHz
- Angular resolution: ~1 degree

QUIJOTE experiment consortium

Instituto de Astrofísica de Canarias (IAC), Tenerife (Spain): Coordinator

Instituto de Física de Cantabria (IFCA), Santander (Spain)

Universidad de Cantabria (UC), Santander (Spain)

CAMBRIDGE

University of Cambridge, (UK)

University of Manchester, Jodrell Bank Centre for Astrophysics (UK)

IDOM, Bilbao (Spain)

Observatorio del Teide (Tenerife, Canary Islands)

Izaña site, 2.390 m

QUIJOTE Instruments 1 and 2 and enclosure

QUIJOTE Experiment. Basic features

	Instrument 1					Instrument 2
Frequency (GHz)	11.0	13.0	17.0	19.0	30.0	30.0
Bandwidth (GHz)	2.0	2.0	2.0	2.0	8.0	8.0
Number of channels	8	8	8	8	2	32
Beam FWHM (deg) (*)	0.92	0.92	0.60	0.60	0.37	0.37
T _{sys} (K)	20.0	20.0	20.0	20.0	30.0	20.0
Sensitivity (mK s ^{1/2})	0.22	0.22	0.22	0.22	0.34	0.05
Sensitivity per beam (Jy s ^{1/2})	0.24	0.34	0.24	0.30	0.43	0.07

(*) Pixel = a square with each side is FWHM (Full Width at Half Maximum) of the beam.

Low frequency channels in QUIJOTE 1

Low frequency channels: 11-13 GHz and 17-19 GHz: eight channels per pixel

Output detected voltage in QUIJOTE 1 - Low frequency channels

$$V = \frac{1}{2}I + \frac{1}{2}Q\cos(4\varphi) + \frac{1}{2}U\sin(4\varphi)$$

Q, U and I = Stokes parameters φ = Position angle of the modulator

These parameters depend on the time and on the channel

30 GHz channel in QUIJOTE 1

Modulator to stabilize gain drift. Simple design: two channels per pixel.

QUIJOTE 1: Focal plane distribution

26-36GHz Horn

14-20GHz Horn

10-14GHz Horn

QUIJOTE 1: Mechanical design (version May 2008)

QUIJOTE 1: Mechanical design (version Feb. 2009)

QUIJOTE 1: Horns

Corrugated feed-horns

10-14 GHz 14-20 GHz 26-36 GHz

Polar Modulator

- Key component of the polarimeter
- Rotating polar modulator (40 Hz): switch out 1/f noise
- Incoming signal modulated at 4 x (modulator frequency)
- Cryogenically cooled: low losses, low impact on noise
- Waveguide component: turnstile 4-way junction

Polar Modulator S-parameter tests

- Low return losses
- Low insertion losses
- High polar isolation
- Tests at 3 polar modulator orientations: 0°, 45° and 90°
- Plots: spikes caused by misalignment of the circular waveguide interfaces
- Tests at Room Temperature

Polar Modulator Return Loss

Polar Modulator Insertion Loss

DE CANTABR

Polar Modulator Isolation

UNIVERSIDAD

- Separates linear orthogonal polar components
- Sets a limit in the cross-polarization
- Based on turnstile junction
- Phase balanced outputs
- Broadband (> 40 % bandwidth)

- Reduced height rectangular waveguide
- Optimized E-plane bends
- Scatterer: a critical part of turnstile junction
- Scalable structure (WR75, WR51, WR28)

OMT parts (WR75 version, 10-14 GHz)

Units: 10-14 GHz 14-22 GHz 26-36 GHz

Ortho Mode Transducer (OMT) S-parameter tests

- Low return losses
- Low insertion losses
- High isolation
- Excellent phase balance
- Tests at Room Temperature

OMT Return Loss

OMT Insertion Loss

solid line: test

dashed line: simulation

OMT Isolation (between rectangular ports)

better than 50 dB

OMT Phase balance (between rectangular outputs)

Cryo LNA. Gain and Noise Temperature

LNA #40A28 24K 290208 Vg1=1V Vg2=1V Vd=0.65V Id=16mA NFA 8975A Loss Comp. Table T_input=22.9K

LNA for low frequency channels

RadioNet- FP7, 2nd Engineering Forum Workshop (Bonn, 16-17 November 2009)

- Te_Table Lin - Te_calc_excel - Te_fixed Lin - G (dB)

10-14 GHz BEM rack RF Gain (QUIJOTE 1)

30 GHz BEM Block diagram (video amp not included)

Bandwidth: 26 to 36 GHz Noise temperature < 500 K

BEM branch (top cover removed)

Manufactured BEM units: 2 + 1 (spare)

Test results (30 GHz BEM)

Gain vs. frequency for two units (detector included),

QUIJOTE 1 - Planning

- Dec. 2009: Cryostat and polar modulators in IAC (Tenerife)
- Jan. 2010: OMT and feed-horns installation
- Mar. 2010: FEM + BEM integration. RF and radiometric testing Transport telescope to Izaña
- Apr. 2010: Preliminary start-up and commissioning

QUIJOTE 2 – 30 GHz Instrument

"If QUIJOTE 1 proves successful"

DE CANTABR

QUIJOTE 2 – The 30 GHz Instrument

QUIJOTE enclosure building

November 2008: Covering main structure

QUIJOTE enclosure building

May 2009: final quality tests

Telescope manufacturing

December 2008:

Telescope shipping

September 2008: **Telescope parts and assembly**

DE CANITARE

Telescope transport

Dec. 2008 – Jan. 2009: from Bilbao to La Laguna (IAC)

Truck in Bilbao

Ship to Tenerife

Telescope QUIJOTE 1 IAC (La Laguna, Tenerife) May 2009

QUIJOTE Second Consortium Meeting (May 2009)

The QUIJOTE CMB Experiment

For further information visit: http://www.iac.es/project/cmb/quijote/index.php

