

In order to get the highest sensitivity , the term $1/(B^*tau)$ should be the small as possible.

In most cases, DTsys/Tsys can be neglected.

The term DG/G is the greatest disturbing term.

How we can reduce $\Delta G/G$?

Please, do not reduce DG/G by increasing G !!!

In order to better understand the meaning of the ratio the dB formatting is necessary.

DG/G (formatted as number) means DG (formatted in dB).

	INSTITUTE OF RADI	IOASTRONOMY - ITALY	
	Phys	Sical meaning $\frac{\Delta G}{\Delta G} = 10^{\frac{\Delta G^{dB}}{10}} - 1$	of ∆G/G
		$\frac{\Delta G}{G}$ ΔG^{\prime}	dB
B=1 GH	z 1E-6	4.3 μdB	
τ=1 see	• 1E-5	43 μdB	
	1E-4	430 µdB	
	1E-3	0.0043 dB	
SEVENTI I FAMEHORK PEDERAMIE		Introduction Causes of Instability Methods of analysis Conclusions	Cagliari, 13 th May 2011

Some typical values of DG/G (num) and DG(dB).

DG(dB) increase as G(dB) increase ,

Also, DG(dB) increase as the number of stages increase.

The data are coming from experimental observations

	INSTITUTE OF RADIOASTRONOMY - ITALY				
	DIPOLE microfonicity				y
	Mechanical Vibrations	Δmm	λmm	∆G dB	ΔTsys mK
T					Based on feasible Tsys values
_	L Band Simulation courtesy of Giuseppe Valente	1	200	0.0050	23
	K Band	0.02	13	0.0015	17
	Introduction Causes of Instability				1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
SEVENTH FRAMEWORK	Methods of analysis Conclusions	C	agilari, 13	way 2011	; Radioi IEL ***

Many mechanical parts, even horn and dipole, are in touch with the cryo cold head.

The cold head produces mechanical vibrations, which are propagate along the metals and may resonate where metal cantilever are encountered.

May be the case of the dipole, which often is made by a thick and heavy cylinder , connected by a thin rod.

	DASTRONOMY - ITAL	Y		
	LN	4		
Gain Variations Causes	mdB/dB/mA	µA/°C	µdB/°C	mK/°C
				Eqiv. Noise based on Tsys=50K
gm variation vs bias Id (self biase	ed) 520	520	25400	0.35
gm variation vs bias Id (servo power supply)	520	0.5 (1)	2.510	0.030.1
Gain variation vs Temperature	n/a	n/a	200700 (room temp.) 50 (cryo)	28
Noise Temp. Variations Cau	Ises	K/°C	m°C/sec Phys. Ten	mK/sec np. Noise Temp
<i>Te</i> variation vs Cryo Temp (1 sec – cryo pump)		-0.05	500	25
Te variation vs Cryo Temp (1 h)		-0.05	0.05	0.0025
TY I I NAMESCIK	 Introduction Causes of Instability Methods of analysis Conclusions 	,	Cagliari, 13 th M	ay 2011 / Radio N ** *

The data are coming from experimental observations of the behavior of the LNA

	(
COAXIAL (CABLE	S	
Coaxial Cables	dB/(dB °C)	μdB/sec	µK/sec
Real case: WEATHER 10 dB loss coax, exposed to weather, sunny winter day (shadowed-illuminated Δ =10°C)	0.0013	6	70
Simulated: FLEXURE 10 dB loss coax, exposed to the typical flexure due to Antenna tracking (180° over 8 hours)	n/a	110	11110
Coaxial Cables		dB	K
Real case: HANDLING Human moving action, especially close to the connectors. (One shot)		0.2	2.3
			I
Introduction Causes of Instability Methods of analysis Conclusions	Cagliar	i, 13 th May 2011	, **** , * Rad ***

		Y - ITALY		
	Dete	ector	S	
Sq	uare Law Detectors	dB/°C	µdB/sec	µK/sec
			Based on a variation of 1°C/hour	Based on Tsys=50K
In 40	strument grade (Wiltron), biased,) GHz, Schottky or Tunnel?	0.005	1.4	16
Sp 50	pacek Lab , Zero bias, Schottky,) GHz	0.05	14	160
i	• Introduction			
TATH FRAMEWORK PROGRAMME	Causes of In Methods of a Conclusions	stability analysis	Cagliari, 13 th May	2011 * RadioN

AVar is a powerful method used to calculate the maximum integration time. But it's little sensitive to non-noise data such periodic signals.

	INSTITUTE OF RADIOASTRONOMY - ITALY	
		Oscilloscope
		The time domain analysis better shows steps rather than freq. domain or AVar.
		The dear old oscilloscope has been substituted by a
	Time	LabView code.
	Method and picture Courtesy of Andrea Maccaferri	
SEVINTH FRAMEWORK	Introduction Causes of Instability Methods of analysis Conclusions	Cagliari, 13 th May 2011

	ITUTE OF RADIOASTRONOMY - ITALY	
	CONCLUSION	S
	Summary of Instabili	ties
Summary of I (assuming pres	Drift and Instabilities ence of mechanical vibrations)	mK/sec
Due to variation	ns of IPWV	0.21.3
Air mass varia	tions due to Antenna Trackingv	210
Due to Dipole	vibrations (1Hz cryo)	20
Due to LNA G	ain variations (worst case)	213
Due to LNA G	Due to LNA Gain variations (typ. cryo)	
Due to LNA Phys. Temp. changes (1 Hz cryo)		25
Due to cables flexure		Negligible
Due to cables l	nandling	> 2000
Due to square	law detector	0.2
TI MENORE	Introduction Causes of Instability Methods of analysis Conclusion	pliari, 13 th May 2011

