Beam shapes for calibrating off-axis detections

Aard Keimpema (JIVE)
keimpema@jive.nl

Multiple simultaneous phase centers

- An interferometer can map the entire primary antenna beams as long as the data is correlated with sufficient temporal and spectral resolution
- Problem : Wide-field data sets are prohibitively large.
- Solution : Produce a single narrow field data set for each source in the beam.
- Internally the data is correlated at the required high spectral and temporal resolution.
- Results averaged down in time and frequency before writing to disk.

Narrow "Pencil beam"

Multiple simultaneous phase centers

Going from 2 to 100 sources requires only 30% more correlation time!

Airy Disk Beam Model

First order model : Uniformly illuminated circular aperture (Airy Disk)

$$
\begin{aligned}
& I(\theta)=\left|\frac{2 \mathrm{~J}_{1}(z)}{z}\right|^{2}, z=\frac{\pi D}{\lambda} \sin (\theta) \\
& \mathrm{D}=\text { Dish diameter, } \\
& \lambda=\text { wavelength } \\
& \mathrm{J}_{1}(\mathrm{z})=\text { Bessel function of the first kind }
\end{aligned}
$$

FWHM $=1.028 / \lambda / D$

Effelsberg illumination pattern @11.7 Ghz

The Effelsberg Holography Campaign - 2001
M.Kesteven, D. Graham, E.Fürst, O.Lochner \& J.Neidhöfer

Gaussian model

- The Airy disk model can very closely be approximated by a Gaussian model

$$
I(\theta)=A_{0} e^{-\frac{\theta^{2}}{2 \sigma^{2}}}
$$

- The optimum fit is $\sigma=0.42 \lambda / D$, for apperture of width D

Model fitting beam shapes

- Least-squares fitting : For a dataset d, containing N data points sampled at positions $\mathbf{r}=\mathrm{r}_{0}, \mathrm{r}_{1}, \ldots, \mathrm{r}_{\mathrm{N}-1}$ and model given by the function $\mathrm{f}(\mathbf{r} ; \mathbf{p})$ find a set of parameters \boldsymbol{p} that minimizes

$$
\mathrm{X}^{2}=\frac{\sum_{i}\left|f\left(\boldsymbol{r}_{i} ; \boldsymbol{p}\right)-d_{i}\right|^{2}}{\sigma^{2}}
$$

- Python program was developed that fits a given beam map to a particular model using least squares fitting.
- Beam map is read from FITS file, other data formats can easily be supported. Can handle multiple input files.
- Supports Gaussian and Airy disk beam models for fitting. Very easy to add new beam models
- Algorithm

1) Make initial estimate of model parameters
2) Box data, restrict model fitting to data points inside beam
3) Least squares fit beam model to data using the Levenberg-Marquardt algorithm.
4) Reapply steps 2) and 3) using new model parameters

Effelsberg map of 3C48 @ 4.85GHz

Original map 750×450 points (not all shown) 2 " resolution, 160×160 data points within beam.
Note the rectangular features at the primary beam edge

Effelsberg map of 3C48 @ 4.85GHz

Gaussian model fit

Residuals Gaussian model

Model : $I(x, y)=A_{0} e^{-\frac{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}}{2(z \lambda)^{2}}}$

Results
$\mathrm{A} 0=1.457 \mathrm{e}+04 \pm 5.14 \mathrm{e}+00$
$\mathrm{X} 0=1.663 \mathrm{e}+01 \pm 2.26 \mathrm{e}-02$
$\mathrm{y} 0=-3.053 \mathrm{e}+00 \pm 2.26 \mathrm{e}-02$
$\mathrm{Z}=1.040 \mathrm{e}+03 \pm 2.65 \mathrm{e}-01$

FWHM $=151.6$ arcseconds

Airy disk model fit

Model : $I(x, y)=A_{0}\left|\frac{2 J_{1}(z)^{2}}{z}\right|, z=\sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}} \frac{\pi D}{\lambda}$

Results

$$
\begin{aligned}
& \mathrm{A} 0=1.3974+04 \pm 3.35 \mathrm{e}+00 \\
& \mathrm{x} 0=1.658 \mathrm{e}+01 \pm 1.60 \mathrm{e}-02 \\
& \mathrm{y} 0=-3.061 \mathrm{e}+00 \pm 1.61 \mathrm{e}-02 \\
& \mathrm{D}=8.200 \mathrm{e}+01 \pm 1.32 \mathrm{e}-01
\end{aligned}
$$

FWHM = 160 arcseconds

Residuals Airy disk model

Model : $I(x, y)=A_{0}\left|\frac{2 J_{1}(z)^{2}}{z}\right|, z=\sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}} \frac{\pi D}{\lambda}$

Results

$$
\begin{aligned}
& \mathrm{A} 0=1.3974+04 \pm 3.35 \mathrm{e}+00 \\
& \mathrm{x} 0=1.658 \mathrm{e}+01 \pm 1.60 \mathrm{e}-02 \\
& \mathrm{y} 0=-3.061 \mathrm{e}+00 \pm 1.61 \mathrm{e}-02 \\
& \mathrm{D}=8.200 \mathrm{e}+01 \pm 1.32 \mathrm{e}-01
\end{aligned}
$$

FWHM = 160 arcseconds

Onsala map of 3C286 @ 4.6GHz

Dataset contains 7×7 datapoints ($3^{\prime} 40$ " resolution)
Each data point is a 800 point spectrum (3.2 MHz Bandwidth)

Residuals Gaussian model

Model : $I(x, y)=A_{0} e^{-\frac{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}}{2(z \lambda)^{2}}}$

Results

$$
\mathrm{A} 0=6.178 \mathrm{e}+01 \pm 1.19 \mathrm{e}+00
$$

$$
x 0=-1.378 e+01 \pm 5.46 e+00
$$

$$
y 0=7.173 e+01 \pm 5.51 e+00
$$

$$
z=4.428 e+03 \pm 6.53 e+01
$$

FWHM $=680 \pm 10$ arcseconds

Residuals Airy disk model

Model : $I(x, y)=A_{0}\left|\frac{2 J_{1}(z)^{2}}{z}\right|, z=\sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}} \frac{\pi D}{\lambda}$

Results
A0 $=5.961 \mathrm{e}+01 \pm 1.05 \mathrm{e}+00$
$X 0=-1.300 e+01 \pm 5.19 \mathrm{e}+00$
Y0 $=6.964 \mathrm{e}+01 \pm 5.29 \mathrm{e}+00$
D $=1.943 \mathrm{e}+01 \pm 2.43 \mathrm{e}-01$
FWHM = 712 arcseconds

Observing antenna beams

- Open questions
- How do beam shapes vary with elevation Example : Onsala (6.7 Ghz) at low elevation

Observing antenna beams

- Open questions
- How do beam shapes vary with elevation
- Beam offsets between polarizations
- Dependence on frequency
- Are polynomial model feasible?
- Only beam information up to the first null is used in the fit. But we need some data points further out to determine bias.
- Integration times should be long enough to average out RFI
- Cover range of elevations but most structure is expected at lower elevations. Eg. $80^{\circ}, 60^{\circ}, 40^{\circ}, 20^{\circ}, 10^{\circ}$
- Would even lower elevations be possible?
- How much elevation change is expected during the observation of a single map? Small enough to treat it as constant?

