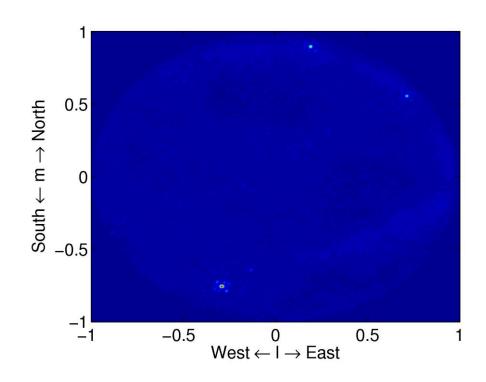


Hilado Work Package 3

Stef Salvini, Stefan Wijnholds, Marzia Rivi

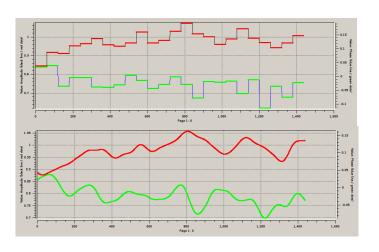
Contents

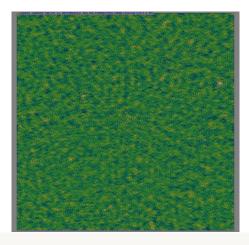
- Current work
- Questions and Issues
 - We want really a discussion not a presentation!



Current work

- StefCal (Statistically Efficient & Fast Calibration)
 - New, lightweight Algorithm
 - \square O(N²) operations
 - Small footprint: O(N²)
 - Robust
 - Potentially highly parallel
 - Paper (the Stefans S & W) almost completed
- Current study
 - Parallelisation & porting to GPUs (Marzia Rivi)
 - API and packaging


StefCal Deployment (1)


- Pipelines
 - LOFAR StationCalibration
 - BBS (\$)
 - AARTFAAC Calibration
 - (which uses the Pelican framework from Oxford)

StefCal Deployment (2)

- MeqTrees
 - Experimental Implementation
 - Good results for
 - VLA
 - Westerbork
 - LOFAR (full polarisation)
 - Including
 - DDEs
 - Time-dependent gains

Questions & Issues

- StefCal
 - Inclusion in selfcal (cfr Oleg & Co.)
 - □ CASA\$
 - BBS
 - Other calibration algorithms (usable within SAGECal?)
 - YFWYŚ
- Relationship wity other Work Packages
- Algorithmic Optimiisation
 - A W Projections
 - CLEAN, SARA and other techniques
- Random thoughts: e.g. DFT vs FFT