

StEFCal

Stef Salvini, Stefan Wijnholds

Contract No: 283393

Basics

StEFCal

- O.Smirnov's nickname
- Statistical Efficient & Fast Calibration (Stefan W's acronym)
- L₂ (least-squares) minimisation
- **D** For minimizing $|| M G D G^{H} ||_{F}$
 - Description: M: model; D: data; G: diagonal or block-diagonal
 - G is
 - diagonal for unpolarised case
 - 2 x 2 block-diagonal for polarised case
 - Distance between model sky and calibrated observation
- O(N²) floating-point operations and memory footptrint throughout
- Accuracy and robustness
- Performance not dependent on the sky complexity

Components

Useful if n.sources << N Otherwise can lead to bias Using mixture of Lanczos & RR: O(N²)

Iteration Akin to ADI with dumping

Mostly for Polarization cases if the iteration fail to converge fast enough Still O(N²)

Iteration

The iteration tries to find the stationary point (zeros) of the norm of the gradient of the Frobenius norm square:

Trace{ $(G^+V) [M - (G^+V)^+G]$ } = 0

- ADI iteration does not converge
- "Damping" very effective
 - Get G [2j+1]
 - Get G [2j+2]
 - Set $G^{[2j+2]} = (G^{[2j+2]} + G^{[2j+2]})/2$
- Relaxation approach available
 - Faster but less reliable

Some performance figures

N. Antennas		Old	StE	FCal
	Time (sec)	Normwise error in G	Time (sec)	Normwise error in G
96 (LOFAR)	0.403	0.204	0.015	0.240
351 (~ SuperTerp)	11.58	0.110	0.058	0.103
1,000 (~ SKA1 station)	273.74	0.069	0.381	0.034

- Simulated sky (GSM 25,000 sources) + receiver noise
- 200 sources used for calibration
- MATLAB code
- My own laptop (Intel Core 2 i7, 2.0 GHz, Windows

Bias & STD compared to Stefan W

Chilbolton LBA LOFAR Station

- Chilbolton LBA LOFAR station data
 - Thanks to Griffin Foster (OU)!
- Channel 300: 58.4 MHz
 - Other channels also available
 - Sequence of snapshots
 - Observations spaced by ~520 seconds
- Model sky of increasing complexity
 - 2 sources
 - **5**00 sources
 - **5**,000 sources

Model Sky

