
1

Parallel Calibration
Marzia Rivi (Oxford)

Hilado F2F meeting
Oxford, 11-12 Apr 2013

Contract No: 283393

2

Calibration problem and data size

•  From a mathematical point of view: least square minimisation
Gs = argmin ||M-GDGH||F
M,D visibilities matrices of order n (non-polarised) or 2n (polarised)
G diagonal (non-polarised) or 2×2 block diagonal (polarised) complex gains
n = number of antennas

•  Typical LOFAR data
96 antennas
512 channels
i.e. calibration to be solved for 512 matrices of order 96 per data cube (of size 288 MB)

Independent problems for each frequency and for each data cube
Small matrices

Contract No: 283393

3

Parallelisation

Given a data cube:
•  calibrate each frequency in parallel (1st level of parallelism – embarrassingly parallelism)
•  solve each frequency by distributing time-consuming sections of the minimisation

algorithm among threads sharing the same memory (2st level of parallelism)
–  cooperation
–  synchronisation

Possible programming paradigms:
•  OpenMP multi-core processor, Intel MIC
•  CUDA GPU

Contract No: 283393

4

Different worlds: CPU and GPU

Threading
resources

multi-core (few)
sophisticated control logic unit
tens of threads

many-cores (several hundreds)
simple control logic unit
thousands of threads

Threads «Heavy» entities Extremely lightweight, managed grouped
into warps

Memory large cache memories to reduce
access latencies

long-latency memory accesses
large bandwidth
small memory size (6GB)

Contract No: 283393

5

OpenMP

•  API for shared-memory parallelism in C, C++ and Fortran
•  compiler directives to define parallel regions of the code
•  library routines
•  environment variables

a(1)
a(2)

a(3)
a(4)

!$omp parallel

 ………

!$omp do
 do i = 1, n

 a(i) = xxx
 end do

!$omp end do

 ………
!$omp end parallel

Contract No: 283393

6

CUDA

•  Provides API to manage joint CPU/GPU execution of an application
•  Extension of the C/C++ (Fortran) language
•  Serial sections of the code are performed by CPU (host)
•  The parallel ones (that exhibit rich amount of data parallelism) are performed by
GPU (device) in the SPMD mode as CUDA kernels.
•  Host and device have separate memory spaces: programmers need to transfer
data between CPU and GPU via PCIe.

Contract No: 283393

7

CUDA threads organization

Block of threads:
set of concurrently executing threads that can
cooperate among themselves through barrier
synchronization and shared memory.

A kernel is executed as a grid of many
(thousands) parallel threads organized
into blocks of the same size.
Block size and number of blocks are
parameters defined in the code.

 Shared Memory/L1
Streaming Multi-processor

GPU

Streaming Processor

Kepler Tesla K20:
6GB global memory
48kB shared memory
192 single-precision cores per SMX
15 SMX

Contract No: 283393

8

GPU non-polarised StefCal

•  Transfer a fixed number k of data cubes on the device memory
•  Perform calibration kernel:

– CUDA blocks of size n=number of antennas, each solving one frequency
– Within the block

•  each thread solve one antenna gain gi
•  for each iteration, gi computations are independent
•  threads synchronisation at the end of each iteration

•  Copy back results to the host

Example: LOFAR data
__global__ void KernelCal(…);
dim3 gridDim(k�512); // number of blocks
dim3 blockDim(96); // threads per block

//call the kernel
KernelCal<<< gridDim, blockDim >>>(<arguments>);

Contract No: 283393

