
 1D. Petry, Attempt at a summary of CASA “HPC” features, April 2013

Attempt at an overview of the CASA “HPC” features
mentioning the ALMA pipeline and the
ALMA QA2 script generator

D. Petry (ESO)

 2D. Petry, Attempt at a summary of CASA “HPC” features, April 2222

Motivation

- ALMA datasets are large
 typical sizes of a single dataset with high spectral res. will be 500 GB
 (MS format, 0.5 h obs time = 1 SB, 40 antennas)

- CASA (e.g. v3.4, official ALMA version in Cycle 0) is too slow:
 already processing a ca. 50 GB dataset took ca. 2.5 h on a 3 GHz machine
 => processing one typical SB execution from cycle 1 will take one day at this rate

- Study shows not all processing tasks are I/O limited, especially not when a
 fast filesystem is available (e.g. SSD or Lustre)
 => can gain from higher computing speed, e.g. by parallelisation

- Up to CASA 3.4, the individual CASA instance runs on a single processor
 except where OpenMP is used (regridding in imaging, table sorting).

- HPC effort started after CASA 3.4 release. Goal: accelerate CASA by parallelisation

 3D. Petry, Attempt at a summary of CASA “HPC” features, April 2013

CASA parallelization

- non-trivial parallelization
 → already implemented in some parts of the imaging code and the table module
 → achieved on the C++ level using OpenMP
 → completely transparent to the user
 → not applicable to most of the processing tasks
 → time-consuming to develop and debug

- trivial parallelization
 → idea: split the input data into independent chunks, process them in parallel
 → design by J. Kern:
 - task partition splits the data along the time and frequency axes
 into a Multi-MS (MMS) - looks like a single MS
 but is many sub-MSs underneath
 - all subsequent tasks recognize the MMS and parallelize themselves to
 process the sub-MSs accordingly.
 → mostly transparent to the user
 → applicable to many of the processing tasks, more simple to test and debug
 → proven overall speed-up by factors > 2 depending on the file-system used

 4D. Petry, Attempt at a summary of CASA “HPC” features, April 2013

CASA parallelization

 5D. Petry, Attempt at a summary of CASA “HPC” features, April 2013

CASA parallelization

C
al

ib
ra

tio
n

imaging

 6D. Petry, Attempt at a summary of CASA “HPC” features, April 2013

CASA parallelization
 - the general idea

Partition to create
separately processable
chunks of data

New task mstransform to
do all I/O-intensive work
at once

Parallel imaging

(pclean does not require MMS as
input but it is supposed to speed
up I/O on parallel file systems.)

C
al

ib
ra

tio
n

C
al

ib
ra

tio
n

C
al

ib
ra

tio
n

ASDM importasdm
+ partition MMS

mstransform = split + cvel + applycal

imaging

 final image cube

calibrated MMS

...

imaging imaging...

 7D. Petry, Attempt at a summary of CASA “HPC” features, April 2013

CASA trivial parallelization
in v4.0 and v4.1
happens task by task

ASDM importasdm
+ partition MMS

imaging

 final image cube

calibrated MMS

...

imaging imaging...

...

next task

...

next task

mstransform = split + cvel + applycal

 8D. Petry, Attempt at a summary of CASA “HPC” features, April 2013

“HPC” work at ESO for 4.0 dev. cycle

- Work in the CASA 4.0 development cycle (mostly at ESO, May – October 2012)
- results:
 1: created monitoring and assessment utilities for the parallelization
 framework and the MMSs
 2: completed the partition task and the parallelization framework
 (created proper unit tests, debugged the existing prototypes, documented)
 3: went through nearly all parallelizable tasks and made them work in the
 parallization framework (extended unit tests accordingly, documented),
 imaging parallelization to be done by K. Golap in Socorro
 4: created an end-to-end regression tests which uses the
 new framework and measured speed-up

 See new chapter in the CASA 4.0 cookbook.

 9D. Petry, Attempt at a summary of CASA “HPC” features, April 2013

“HPC” work at ESO for 4.0 dev. cycle

Results of the 4.0 dev. cycle

- speedup measurements based on ca. 30 GB ALMA datasets
 were disappointing (only ca. 10-20% speedup overall)
 - presently assume our dataset too small to demonstrate the speedup,
 but even on a SSD system the speedup is small.
 - Discussion on parallel file systems vs. solid state disks necessary
 - Advantages of a parallel file systems for the individual user
 running one analysis session still have to be demonstrated.

 10D. Petry, Attempt at a summary of CASA “HPC” features, April 2013

“HPC” work at ESO for 4.0 dev. cycle

- Work in the CASA 4.1 development cycle (since end of 2013)
 1) Creation of the “mstransform” task (mostly at ESO),
 a combination of split, cvel, applycal, and partition
 functionality (recurring pattern in analysis scripts)
 to achieve further speed-up by avoiding I/O on intermediate data
 (at least partially in release 4.1)

 2) Ger, Michel, and DP developed “lazy” import in importasdm:
 new asdmStMan storage manager enables direct access to the ASDM
 via the DATA column (which is read-only anyway!)
 => reduces data volume on disk by nearly 50%,
 speeds up import by ca. 80%,
 speeds up access (due to compressed storage in ASDM) by 20%,
 => overall speedup equivalent to elimination of import(!)

 3) DP developed “virtualconcat”: concatenation of MSs into MMS
 speedup factor 5 to 10 w.r.t. concat

 11D. Petry, Attempt at a summary of CASA “HPC” features, April 2013

“HPC” work at ESO for 4.0 dev. cycle

...
 2) Ger, Michel, and DP developed “lazy” import in importasdm:
 new asdmStMan storage manager enables direct access to the ASDM
 via the DATA column (which is read-only anyway!)
 => reduces data volume on disk by nearly 50%,
 speeds up import by ca. 80%,
 speeds up access (due to compressed storage in ASDM) by 20%,
 => overall speedup equivalent to elimination of import(!)

 3) DP developed “virtualconcat”: concatenation of MSs into MMS
 speedup factor 5 to 10 w.r.t. concat

The last two points show:
 Speed can not only be gained by brute-force parallelisation!
 Deep understanding of the data structure and clever optimisation
 of time-consuming processes can give large improvements
 also without using more than one processor!

 12D. Petry, Attempt at a summary of CASA “HPC” features, April 2013

The ALMA Pipeline

- No time to go into the decade-long history of the ALMA pipeline

- Status now:
 - calibration section nearing completion for cycle 0 features
 - imaging section still rudimentary

- Ideas:
 - Separated Heuristics and Context routines
 - Analysis in “stages”
 - User submits “Pipeline Processing Request” (PPR),
 pipeline does the rest and takes all decisions automatically
 including reiterations etc.
 - To be embedded in CASA and distributed with it,
 anybody can rerun it

- Expect to switch ALMA QA2 calibration to pipeline late this year

 13D. Petry, Attempt at a summary of CASA “HPC” features, April 2013

The ALMA QA2 script generator

- For commissioning and quality assurance, JAO and the ARCs developed
 the QA2 Script Generator (lead: E. Villard)

- general idea: given an raw ALMA MS, the generator creates analysis scripts
 which do the entire data analysis

- separate script for calibration and imaging

- scripts meant to be run by the QA2 expert analysts AND the science end user

- initially the expert analysis runs the scripts step by step (special stepping
 mechanism implemented)
 and makes corrections if necessary (e.g. additional flagging)

- when the script is OK, it can be run in one go or in groups of steps

- final scripts are part of the delivery to the science end user

