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Attempt at an overview of the CASA “HPC” features
mentioning the ALMA pipeline and the 
ALMA QA2 script generator

D. Petry (ESO)



 2D. Petry, Attempt at a summary of CASA “HPC” features, April 2222    

Motivation

- ALMA datasets are large
  typical sizes of a single dataset with high spectral res. will be 500 GB 
  (MS format, 0.5 h obs time = 1 SB, 40 antennas)

- CASA (e.g. v3.4, official ALMA version in Cycle 0) is too slow:
  already processing a ca. 50 GB dataset took ca. 2.5 h on a 3 GHz machine
  => processing one typical SB execution from cycle 1 will take one day at this rate

- Study shows not all processing tasks are I/O limited, especially not when a
  fast filesystem is available (e.g. SSD or Lustre) 
  => can gain from higher computing speed, e.g. by parallelisation

- Up to CASA 3.4, the individual CASA instance runs on a single processor
  except where OpenMP is used (regridding in imaging, table sorting).

- HPC effort started after CASA 3.4 release. Goal: accelerate CASA by parallelisation



 3D. Petry, Attempt at a summary of CASA “HPC” features, April 2013    

CASA parallelization 

- non-trivial parallelization
  → already implemented in some parts of the imaging code and the table module
  → achieved on the C++ level using OpenMP
  → completely transparent to the user
  → not applicable to most of the processing tasks
  → time-consuming to develop and debug

- trivial parallelization 
   → idea: split the input data into independent chunks, process them in parallel
   → design by J. Kern: 
            - task partition splits the data along the time and frequency axes   
                into a   Multi-MS (MMS)  - looks like a single MS 
                                                           but is many sub-MSs underneath
            - all subsequent tasks recognize the MMS and parallelize themselves to
              process the sub-MSs accordingly.
   → mostly transparent to the user
   → applicable to many of the processing tasks, more simple to test and debug 
   → proven overall speed-up by factors > 2 depending on the file-system used



 4D. Petry, Attempt at a summary of CASA “HPC” features, April 2013    

CASA parallelization
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CASA parallelization 
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CASA parallelization
 - the general idea

Partition to create 
separately processable
chunks of data

New task mstransform to 
do all I/O-intensive work 
at once

Parallel imaging

(pclean does not require MMS as
input but it is supposed to speed
up I/O on parallel file systems.)
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ASDM importasdm
+ partition MMS

mstransform = split + cvel + applycal 

imaging

               final image cube

calibrated MMS

...

imaging imaging...
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CASA trivial parallelization
in v4.0 and v4.1
happens task by task

ASDM importasdm
+ partition MMS

imaging

               final image cube

calibrated MMS

...

imaging imaging...

...

next task

...

next task

mstransform = split + cvel + applycal 
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“HPC” work at ESO for 4.0 dev. cycle

- Work in the CASA 4.0 development cycle (mostly at ESO, May – October 2012)
- results: 
      1: created monitoring and assessment utilities for the parallelization
          framework and the MMSs
      2: completed the partition task and the parallelization framework
          (created proper unit tests, debugged the existing prototypes, documented)
      3: went through nearly all parallelizable tasks and made them work in the
          parallization framework (extended unit tests accordingly, documented),
          imaging parallelization to be done by K. Golap in Socorro
      4: created an end-to-end regression tests which uses the
          new framework and measured speed-up

  See new chapter in the CASA 4.0 cookbook.
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“HPC” work at ESO for 4.0 dev. cycle

Results of the 4.0 dev. cycle

- speedup measurements based on ca. 30 GB ALMA datasets
   were disappointing (only ca. 10-20% speedup overall)
   - presently assume our dataset too small to demonstrate the speedup,
     but even on a SSD system the speedup is small.
   - Discussion on parallel file systems vs. solid state disks necessary
   - Advantages of a parallel file systems for the individual user
     running one analysis session still have to be demonstrated.
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“HPC” work at ESO for 4.0 dev. cycle

- Work in the CASA 4.1 development cycle (since end of 2013)
      1) Creation of the “mstransform” task (mostly at ESO), 
        a combination of split, cvel, applycal, and partition
        functionality  (recurring pattern in analysis scripts)
        to achieve further speed-up by avoiding I/O on intermediate data
        (at least partially in release 4.1)
      
      2) Ger, Michel, and DP developed “lazy” import in importasdm:
        new asdmStMan storage manager enables direct access to the ASDM
        via the DATA column (which is read-only anyway!)
        => reduces data volume on disk by nearly 50%,
             speeds up import by ca. 80%,
             speeds up access (due to compressed storage in ASDM) by 20%,
         => overall speedup equivalent to elimination of import(!)

     3) DP developed “virtualconcat”: concatenation of MSs into MMS
        speedup factor 5 to 10 w.r.t. concat 
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“HPC” work at ESO for 4.0 dev. cycle

...      
      2) Ger, Michel, and DP developed “lazy” import in importasdm:
        new asdmStMan storage manager enables direct access to the ASDM
        via the DATA column (which is read-only anyway!)
        => reduces data volume on disk by nearly 50%,
             speeds up import by ca. 80%,
             speeds up access (due to compressed storage in ASDM) by 20%,
         => overall speedup equivalent to elimination of import(!)

     3) DP developed “virtualconcat”: concatenation of MSs into MMS
        speedup factor 5 to 10 w.r.t. concat

The last two points show: 
    Speed can not only be gained by brute-force parallelisation!
    Deep understanding of the data structure and clever optimisation
    of time-consuming processes can give large improvements
    also without using more than one processor! 
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The ALMA Pipeline 

- No time to go into the decade-long history of the ALMA pipeline

- Status now: 
      - calibration section nearing completion for cycle 0 features
      - imaging section still rudimentary

- Ideas: 
      - Separated Heuristics and Context routines
      - Analysis in “stages”
      - User submits “Pipeline Processing Request” (PPR),
        pipeline does the rest and takes all decisions automatically
        including reiterations etc.
      - To be embedded in CASA and distributed with it,
        anybody can rerun it

- Expect to switch ALMA QA2 calibration to pipeline late this year
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The ALMA QA2 script generator 

- For commissioning and quality assurance, JAO and the ARCs developed
  the  QA2 Script Generator (lead: E. Villard)

- general idea: given an raw ALMA MS, the generator creates analysis scripts
  which do the entire data analysis

- separate script for calibration and imaging

- scripts meant to be run by the QA2 expert analysts  AND  the science end user

- initially the expert analysis runs the scripts step by step (special stepping
  mechanism implemented) 
  and makes corrections if necessary (e.g. additional flagging)

- when the script is OK, it can be run in one go or in groups of steps

- final scripts are part of the delivery to the science end user


