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2 INTRODUCTION

The presented beamformer is a narrow-band beamformer operating on frequency channels of around 1MHz bandwidth. The specifications are oriented
towards SKA phase 1 requirements [4], [7]: 384MHz observing bandwidth, 256 dual-polarization receivers (512 antenna signals), and 64 beams. The
fundamental mathematical operation that it performs is

(1)

where xm(n) is the signal from the m-th antenna at sample time n*T0, wm  the weightfactor for the m-th antenna, and y(n) the beam sample at time n*T0.
All of the quantities y, x, and w are complex numbers. In (1), a single-beam system (many-to-one) is described.
A system computing several beams b = 0 ... B-1 (many-to-many) can then be described as

(2)

Finally, if the antenna signals have been split into a number of frequency channels c = 0 ... C-1 the system can be described as

(3)

The beamformer is polarization-agnostic, meaning, all 512 antenna signals can be used for the computation of a given beam. Polarization can be
included by setting the weigths appropriately. For an estimate of the error arising from the channel bandwidth see [1].
The system must maintain a total of M*B*C weightfactors. In this example design this amounts to 12,582,912 complex numbers. The precision is set
to 19 bits per component, as this is the maximum width of the hard-wired multipliers on the Arria-10 FPGAs. Thus, a total of 478,150,656 bits must be
provided for the weightfactors.

The total number of complex multiplications per second is given by 384*106*512*64 = 1.2582912*1013. The FPGAs which are planned to be used for
a low-cost version of the Uniboard2 provide a total of 759 hard-wired macros for complex multiplication. For a complex multiplication
(a + jb) * (c + jd), operand width for a and b can be up to 18 bits, whereas the width for c and d can be up to 19 bits.
For cost reasons this study uses the slowest production version of the FPGA, which allows the complex multipliers to be used at up to 360MHz. The
complex multipliers are grouped into sub-arrays of 16 units, so that 7 complex multipliers remain unused per FPGA. In order to meet the computing
requirements, a total of 48 FPGAs on 12 Uniboards are used. Then the minimum clock frequency is

(4)

Thus, using a clock frequency of 360MHz in conjunction with shallow buffers will provide some headroom for compensating any data rate variations.
Each FPGA needs to process 384 / 48 = 8 frequency channels across the 512 antenna signals. We assume that channelization is done by polyphase fil-
terbanks, and that the complex output samples have a width of 16 bits per component. Thus, data rate into each beamformer FPGA is 8*512*106*32 =
1.31072*1011bit/s. We assume conservatively that a net data rate of 10Gb/s can be achieved per backplane lane. Thus, each beamformer FPGA needs
at least 14 such interfaces. Each beamformer-FPGA provides a total of 72 such backplane interfaces, so this is not a limitation. However, the actual
number of interfaces depends on the architecture of the polyphase filterbanks, and on how the 512 antenna signals are connected to the filterbank-
FPGAs.
These particular considerations shall now be used to derive architecture and size of the beamformer. Because of the multitude of hardware constraints
it is very hard to give general rules for scaling the system. A change of the desired performance or availability of more powerful chips might very well
require the design of a completely different architecture.

2.1 Document Organization

Sections 3 and 4 describe system and chip architecture on a fairly high level to effectively convey the basic ideas of the design. These sections only
describe the data paths and arithmetic units, without going into details regarding control units and control interfaces. This basic infrastructure is
assumed to simply „be there“ and work in the expected way. It will mostly be described in general terms.
Also not covered in these sections are considerations regarding minimum operand precision across the many buses in the design. As general design
guidelines, the maximum precision as provided by the available hardware resources (multipliers, RAM etc) is used for the operands. This also defines
the width of register banks and other units. In many cases this kind of arithmetic precision might not be necessary.
Section 5 discusses ways to scale the presented architecture towards higher performance. The goal is to be able to process more antennas, wider band-
width, more beams, or combinations thereof. Most likely this will require the use of more powerful FPGAs (Stratix-10), or a parallel arrangement of
multiple systems.
Section 6 is about “green measures”, which in this case means power efficiency. Several methods for reducing power consumption are discussed.
These methods relate to specific implementation styles and algorithmic optimizations. However, savings that arise from unused antennas, or weight-
factors being zero or negligible (in a potential PAF application), are not considered in this work.
Section 7 finally describes the VHDL implementation. The main purpose of the implementation is to verify the effectiveness of the “green measures”,
and not to verify the correctness of the circuitry itself. Thus, the VHDL code is just a skeleton of the final design which will not necessarily produce
meaningful results. However, the design will include all relevant parts to prove that the chip will meet the performance requirements.

y n( ) wm xm n( )⋅
m 0=

M 1–

¦=

yb n( ) wm b, xm n( )⋅
m 0=

M 1–

¦=

yb c, n( ) wm b c, , xm c, n( )⋅
m 0=

M 1–

¦=

1,2582912 1013⋅ 48 752⋅( )⁄ 348,6MHz=



7

3 SYSTEM ARCHITECTURE

3.1 Filterbank

Since there are 512 antenna signals, the system needs to have 512 filterbanks. It is assumed that the actual implementation employs polyphase filter-
banks with a channel bandwidth of about 1MHz. It might be the case that the observing bandwidth is larger than 384MHz [7], in which case it is
assumed that 384 channels can be selected arbitrarily out of the larger set of filterbank output channels.
It is further assumed that the polyphase filterbank generates complex samples with 16 bits for both the real and imaginary components. This particular
bit width is not a strict requirement, however, the components may not have more than 18 bits due to hardware limitations (multiplier port width).
The design of this filterbank is not part of this workpackage, so we cannot make any statements about the required hardware resources. From other
projects [2], [3] we conservatively estimate that one FPGA can implement 32 filterbanks. Then, a total of 16 FPGAs are needed, or four Uniboards. In
this case the signal processing system would take the shape of a standard midplane system with eight Uniboards to the left and eight to the right of a
midplane (also called backplane).
In an SKA scenario it is most likely that the signal processing system is located in a central facility, and that the digitizers are located close to the
receivers (dishes). Data is then transmitted in digital form over optical fibers. In the first instance the digitizer signals should be connected to those
Uniboards that implement the filterbanks. In case there are not enough interface resources, digitizer signals can also be connected to the other Uni-
boards and passed on to the filterbank units via the backplane.
A block diagram showing the filterbank, its partitioning and the output distribution is given in Figure 1.

Figure 1: General Filterbank Architecture
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3.2 Backplane

A decision was made to not include any local mesh on the Uniboard2, but to provide all interconnects on a backplane. Again, design of the backplane
is not part of this workpackage. Therefore we list only basic requirements about the interconnect structure in order to support the beamformer, assum-
ing a polyphase filterbank as described above.
According to the data rates given in Figure 1, any filterbank-FPGA needs to connect to any beamformer-FPGA via one 10Gbit/s backplane lane (trans-
ceiver channel). This occupies 48 transceivers on any filterbank-FPGA. Conversely, any beamformer-FPGA is connected to any filterbank-FPGA,
which occupies 16 transceivers on any beamformer-FPGA. This basically constitutes the required interconnect structure on the backplane. We assume
that the results of the beamformer (beam samples) are output via optical links local to each beamformer-FPGA to a GPU-cluster or similar external
device.
A sketch of the required interconnect structure is shown in Figure 2. See also [5] for planned interconnect capabilities.

3.2.1 Revised Architecture

The Uniboard2 architecture has been modified for the production version as shown in Figure 3 [12]. Each FPGA now has only 48 FD pairs towards the
backplane because of routing constraints. However, this number is just sufficient for the beamformer architecture presented here. The remaining 24
FD pairs are used to construct a ring network, which might be used for sample distribution (as an example see Figure 26), or for fast update of weight-
factors.

Figure 2: Interconnect Structure

Figure 3: Interconnect Structure (Revised Version)
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4 ARCHITECTURE OF THE BEAMFORMER FPGA

All 48 beamformer-FPGAs have an identical design. The specific role of an individual FPGA is defined by its place on the backplane, the programma-
ble set of weight factors, and by further programmable parameters such as output destination.
The beamformer-FPGA consists mainly of six parts:

• sample input stage,
• input fan-out register tree,
• beamformer unit,
• weightfactor memory,
• weightfactor fan-out register tree, and
• output stage.

In addition to these units there are control and synchronization units at various places, whose functionality will be described only in general terms.
Also, the general infrastructure for writing all programmable parameters including weightfactors will be described in a later document.

4.1 Chip Resources

For a better understanding of the following sections we shall give a coarse overview of available hardware resources. The specific FPGA that is
planned to be used for the production version is an Altera Arria-10 GX 1150 (order code Altera 10AX115U4F45I3SG).

4.1.1 Logic
Configurable logic elements on an Arria-10 FPGA include so-called LABs (Logic Array Blocks) and MLABs (Logic Array Blocks that also can be
used as RAM). Both are further divided into so-called ALMs (Adaptive Logic Modules). Each ALM provides two LUTs, a two-bit carry-chain for
building adders, and 4 flipflops (registers). The LUTs allow computation of any boolean expression of up to 7 variables. The FPGA provides a total of
854,400 LUTs, and 1,708,800 single-bit registers.

4.1.2 Arithmetic

Each FPGA provides a total of 1,518 so-called „DSP Blocks“, each providing two 18×19 bit multipliers among other things. These multipliers are
implemented as specialized hardware units. The design tools allow two DSP Blocks to be used as one complex multiplier (CXM). Thus, there are 759
CXMs on the chip.

4.1.3 Memory
Each FPGA provides a total of 2,713 memory blocks of 20Kbits each. These specialized hardware units are called „M20K“. They can be organized as
512×40 bits. Thus, for example, one entry can hold one complex weightfactor with 19 bits for both the real and imaginary component.
M20K blocks can be used as dual-port memory with one read and one write port. Reading from an entry that is simultaneously being written to has
some implications, so it is best to avoid this situation.

4.2 Block Diagram

The block diagram of a beamformer-FPGA is shown in Figure 4.

Figure 4: Beamformer-FPGA Block Diagram
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4.3 Input Stage

The input stage consists of 16 identical interfaces, each connecting to one filterbank-FPGA. Each interface can be implemented as a 10GBASE-KR
transceiver channel (10Gbps Ethernet for backplanes), and should provide a data rate of about 10Gbps. In case of 10GBASE-KR, the interface
towards the FPGA-logic is called XGMII (10 Gigabit Media Independent Interface) and is implemented as a parallel interface transfering 8 bytes in
parallel. The clock rate at this stage is 156.25MHz.
The samples enter a FIFO memory which should be large enough to provide buffer space for a number of data packets. For safety purposes we assume
a buffer capacity of 16KByte per interface, for a total of 256KByte across the input stage. FIFO memories are typically implemented using the Altera
design tools. These tools report a memory consumption of 7 M20K blocks per FIFO, for a total of 112 such blocks across the input stage. This rep-
resents about 4% of the available resources.
Towards the remaining logic on the beamformer-FPGA, a 32-bit data bus is needed. Thus, the read-port of each FIFO is carried out as 32-bit interface,
and data width reduction is handled by internal control logic. Besides this, the FIFOs also provide translation between the I/O- and the system clock
domains (156.25MHz to 360MHz).
Accordingly, one complex sample (16 + 16 bits) is read per read cycle (clock) from each FIFO, or 16 complex samples are read per clock across the
entire input stage.
The samples need to be transmitted by the filterbank-FPGAs in a specific order, which is shown in Figure 5. See also Figure 1 for sample arrangement.
Sample origin is given by [Antenna Number; Frequency Channel Number].

Figure 5: Input Stage Block Diagram
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4.4 Input Fan-Out Register Tree

The FIFO of interface n  feeds the data to CXM unit n in each beamformer core (see section 4.5.5). There are 47 beamformer cores. Thus, the fan-out
is 47 as well, and to reduce wiring delays and meet the clock rate the input data is distributed by a fan-out register tree. We use a two-stage 6×8 register
arrangement. Thus, this distribution stage consumes 27,648 flipflops. This is 1.6% out of 1,708,800 available flipflops. The arrangement is sketched
out in Figure 6. Note that the latency introduced by this structure is of no concern.

4.5 Beamformer Unit

The beamformer unit is divided into an array of independent beamformer cores in order to make better use of the available hardware resources. Each
beamformer core operates on one sample across all 512 antennas in one frequency channel and generates all 64 beam samples from this input data set.
We call this collection of input samples an input vector (see Figure 1).
A beamformer core uses 16 complex multipliers (CXM) in parallel. Accordingly, there are 47 beamformer cores on the chip, with a total of 7 CXMs,
or 14 DSP Blocks going unused. This represents a resource utilization of 99.1%.
A beamformer core will only start operating when all 512 complex samples are available. Thus, we need one M20K memory block in front of each
CXM for data buffering. An input vector will only occupy 32 out of 512 entries of each M20K block, so there is ample room for buffering and data
rate adjustments. A total of 752 M20K blocks are needed for this purpose, or about 27.7% of the available memory blocks. The weightfactors, on the
other hand, are streamed in real-time from the weightfactor memory and don‘t need deep buffers. This will be explained in detail in the following sec-
tion.

4.5.1 Theory of Operation

Whenever a beamformer core has enough free storage space for an input vector it will issue a work package request to the scheduler (see Figure 4).
The scheduler will prioritize all requests and send an input vector to the selected beamformer core. This input vector is simply the next input vector in
the input FIFOs and can be from any of the eight frequency channels. A read across all input FIFOs will yield 16 complex samples, which are written
into the 16 memory blocks of the beamformer core in parallel. 32 such transfers are needed to move a complete input vector to the selected beam-
former core.
Using such scheme it cannot be predicted which frequency channel any given beamformer core will receive, nor the exact point in time the complete
input vector will be available. Still the beamformer core is required to run at 100% efficiency, i.e., no single cycle may be spent idle when input data is
available.
For this purpose the weightfactor memory (see section 4.6) issues a constant stream of weightfactors for all eight frequency channels. The beamformer
core utilizes a set of multiplexers to select the proper frequency channel. Most importantly, however, the stream of weightfactors also include the index
of the current set of weightfactors, which consists of antenna and beam number. Using this index, a beamformer core can select the corresponding time
samples from the memories and start processing immediately, even if it tapped the weightfactor stream in mid-sequence. It is obvious that the sum of
products in (3) can be computed in any order.
A control unit local to each beamformer core only needs to determine when an input vector has been completed, which happens after 2048 clocks. It
will then tag the corresponding partial sums as being the last ones, and switch to the next input vector in the sample memories, if present.
The „inner loop“ iterates over beams, which reliefs timing requirements of the accumulator at the output of a beamformer core.

Figure 6: Input Fan-Out Register Tree
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4.5.2 Beamformer Core Block Diagram
The beamformer unit consists of 47 identical beamformer cores. As explained above, this uneven number is given by the available chip resources and
might be different for other FPGA variants. Nevertheless, the architecture should allow any number of beamformer cores to be operated at peak per-
formance. A beamformer core consists of the following parts:

• weightfactor and index multiplexer,
• memory and CXM stage,
• adder tree, and
• accumulator.

These units are detailed in the following sections. The block diagram is shown in Figure 7.

Figure 7: Beamformer Core Block Diagram
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4.5.3 Weightfactor and Index Multiplexer

The scheduler has written an input vector into the sample memories, and also the frequency channel number (0 .. 7) into a small FIFO. The frequency
channel number is used to select one of eight weightfactor streams from the weightfactor memory system. Thus, this stage mainly consists of a very
wide MUX and a set of registers. A control unit reads the channel FIFO and counts the number of cycles. In cycle 2047 it issues the flag „LAST“ to
the adder tree, to be passed on to the accumulator stage.

4.5.4 Control Unit
The control unit basically consists of a small state machine and a counter. It controls operation of the entire beamformer pipeline down to the output
interface. Provided the channel FIFO does not run empty (and input vectors are available accordingly), uninterrupted operation is established.

Figure 8: Weightfactor and Index Multiplexer
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4.5.5 Memory and CXM Stage

This unit receives a set of 16 complex weightfactors from the multiplexer stage each clock. In addition to that, it receives a memory address of the cor-
responding set of samples, and the beam number. Its sole task is to read the sample memory, and to pass the 16 complex samples together with the
weightfactors to the complex multiplier (CXM). Therefore this unit is divided into 16 Memory and CXM units, as shown in Figure 10.

The entire stage is shown in Figure 11. Products and beam number are passed on to the adder tree. Note that all 16 memory blocks, which consist of
one M20K block each, receive the same read address. Writing samples from the input stage is always done in units of 16 complex samples, one from
each input interface, per clock. Also, a transfer always includes one complete input vector. Therefore, we need only one write address counter for all
16 memories, which is incremented upon the Write Enable signal from the scheduler. The counter will endlessly wrap around.

Figure 10: One Sample Memory and associated CXM Unit

Figure 11: Memory and CXM Stage
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4.5.6 Adder Tree
The adder tree is a pipelined binary tree of adders, which compute one partial sum of 16 complex products each clock. Each adder is pipelined in itself
for high performance. Operand precision starts at 35 bits and increases by one bit per stage. The tree has 4 stages. After the last stage the operands are
truncated to 35 bits again.

Figure 12: Adder Tree
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4.5.7 Accumulator Stage
The accumulator stage accumulates one complex sample for each of the 64 beams. Each component is maintained as a 40-bit number. Format conver-
sions or rounding can be done after the beam samples are complete.
The partial sum of 16 complex multiplies that has been produced by the adder tree arrives together with the beam number at this stage. The beam num-
ber is used as the read address, and later as the write address, for a memory system holding the beam sample as it has been computed so far. In a pipe-
lined fashion the new partial sum will be added to the current value, and the updated value will be written back. Since the „inner loop“ iterates over the
beam number, read and write address will always be different and so read/write-hazards will be avoided.
For each beam, 32 partial products need to be accumulated.
The accumulator stage in its basic form is shown in Figure 13.

Figure 13: Accumulator Stage (Basic Form)
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However, at some point in time the beam samples need to be read by the output stage, and the beam memory must be cleared for the next input vector.
This might interrupt the operation of the beamformer core. In order to avoid this, the beam memory is implemented as a double-buffer. While one
memory system is used for accumulation, the other is read and cleared. Buffer switching must be controlled by the beamformer core control unit, and
synchronized with the output stage.

A block diagram of the double-buffered accumulator stage is shown in Figure 14. In this form the accumulator stage consumes four M20K blocks. For
the entire beamformer unit this sums up to 188 M20K blocks, or about 7% of the available resources.

In Figure 14, note the flag „LAST“, which identifies the last partial sum of an input vector, which in turn completes the last beam sample. The next
partial sum will belong to the next input vector, and must therefore be accumulated into the other buffer. This buffer in turn must have been read and
cleared by the output stage by then. Computing all beam samples for a given input vector will take 2048 clock cycles, reading and clearing the buffer
will take at most 128 clock cycles. The control unit of the output stage also receives the LAST-flag.

The LAST-flag switches all memory ports as the data travels through the pipeline, so there is not a single cycle overhead when switching to a new
input vector.

Figure 14: Double-Buffered Accumulator Stage
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4.6 Weightfactor Memory

Each beamformer-FPGA processes 8 frequency channels from 512 antennas and produces 64 beams. Therefore it needs to store 8*512*64 = 262,144
complex weights. Both real and imaginary components have a width of 19 bits and are two‘s-complement fixed-point numbers.
The weightfactor memory is organized as eight independent banks, one for each frequency channel. Thus, a bank holds 512*64 = 32,768 weightfactors
and occupies 64 M20K blocks. The entire weightfactor memory therefore occupies 512 M20K blocks (out of 2,713, or about 19%).
In order to keep the beamformer core operating at maximum speed, each weightfactor memory bank outputs 16 weightfactors in parallel. Thus, each
memory bank is physically organized as a 2048×640 bit memory, consisting of a 4×16 array of M20K blocks.
See Figure 15 for a block diagram of one weightfactor memory bank.

Note: a more flexible index management can be obtained by storing the indices along with the weightfactors in the weightfactor memory.

4.7 Weightfactor Fan-Out Register Tree

This distribution network is similar to and serves the same purpose as the register tree in Figure 6. It also uses a two-stage 6×8 register arrangement.
Flipflop-consumption is 262,456, or 15.4% of the available registers. Note that again the latency introduced by this structure is of no concern.

Figure 15: One Weightfactor Memory Bank
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4.8 Output Stage

The task of the output stage is to monitor the „LAST“-flags from all beamformer cores, collect the beam samples, convert the operands to single-pre-
cision floating-point numbers and send the data to the final, in this scenario external destination.
Reading the beam samples sequentially from all accumulator memories takes 47*64 = 3008 clocks, this is more than what is needed to compute a new
set of beam samples on a given beamformer core (2048 clocks). Thus, the output stage needs to be implemented as several independent units, each
serving only a subset of beamformer cores. For this example design we assume six such units, each serving 8 (7) beamformer cores. Clearing the beam
sample buffers can be done mostly overlapping with the read-out.
The data rate produced by each individual output unit is as follows. One complex beam sample is computed in 32 clocks on each beamformer core. At
360MHz, this amounts to 88.9ns. Each beam sample is output as two SP-FP numbers, or 64 bits in total. The aggregate data stream from 8 beamformer
cores adds up to 8 * 64 bits / 88.9ns = 5.76Gb/s. Thus, each output unit connects to one 10GbE interface. This can either connect to an optical trans-
ceiver, or to the backplane. As for the input stage there is one output FIFO, translating between the clock domains and also the data bus widths.

4.8.1 Output Unit
The schematic diagram of one output unit is shown in Figure 16. The control unit receives the LAST-flags from the eight beamformer cores, prioritizes
the signals and reads out the beam samples. A tree of multiplexers is used to pass the proper samples to the fixed-point to floating-point converters.
The control unit will also have all required information to assemble a valid Ethernet packet including destination address.

Figure 16: Output Unit
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4.8.2 Control Unit
The control unit latches all LAST-flags and performs a rotational scan to find an active bit. Then, the header is read (7 words, or 56 bytes) and passed
to the Ethernet interface. Afterwards the beam samples are transferred, and during read-out the buffer is cleared. Finally an 8-byte placeholder for the
CRC32 is read from the header memory (all zeros). The header circuitry needs to be adapted and most likely be extended to meet the final structure of
the entire system. In this design a simplified version is implemented to facilitate basic testing. 

Figure 17: Control Unit
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4.8.3 10Gb Ethernet Interface

There are six 10Gb Ethernet ports in the output stage, which in this design are grouped in one transceiver bank. This configuration allows the transmit
clock for all transmitters to be generated by a single ATX PLL.The ports are configured as Tx-only, the receiving device is assumed to be able to pro-
cess the entire data stream without pause at all times. Each port includes a 10Gb MAC, which generates the CRC for each frame. The MAC provides
an Avalon Streaming Interface to the upstream circuitry.
For this design we assume that the data is sent via the optical transceivers to an external destination and thus we use 10GBASE-R interfaces.

Figure 18: 10Gb Ethernet Output Interface
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4.8.4 Data Transfer Control
It is assumed that an Ethernet frame consists of 576 bytes, or 72 64-bit words on the write-side, or 144 32-bit words on the read side of the FIFO. The
entire frame including a 6-byte destination address, 6-byte source address, 2-byte type field, 42-byte protocol header (IP, UDP etc.), 512 bytes pay-
load, and an 8-byte placeholder (set to 0 in the FIFO packet) must be written into the FIFO. The placeholder will be replaced with the CRC32 by the
MAC, with 4 bytes going unused. The controller waits for at least this number of words to be present in the output FIFO, and transfers the packet in
one transaction. Afterwards it waits a minimum of four clock cycles to satisfy the IPG requirements.

4.8.5 Complete Output Stage
A block diagram of the output stage is shown in Figure 20.

Figure 19: Data Transfer Controller

Figure 20: Complete Output Stage
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4.9 System Outline

Figure 21 shows a sketch of the Uniboard and a 3D rendering of how the complete beamformer system could look like. The dimensions of the Uni-
board are 280mm x 366.7mm. The midplane is designed for a 19” rack and is of size 428mm x 387mm. Thickness is 3.3mm.

Figure 21: Sketches of the Components
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4.10 Design Summary

We have presented system and chip architecture for a beamformer based on the Uniboard2 signal processing platform. The performance figures are
oriented towards the SKA Phase 1 requirements: 384MHz observing bandwidth, 256 dual-polarization receivers (512 antenna signals), and 64 beams.
The design target was to achieve a high resource utilization and a high compute efficiency. This has been achieved by a special data flow architecture,
in which the stream of weightfactors, rather than the stream of samples, controls the sequence of operations. This allows a high percentage of chip
resources such as hardware-multipliers, even if being an uneven number, to be employed. Also, any expensive redundant storage of weightfactors is
avoided. An overall pipeline structure together with redundant buffers allows uninterrupted operation without a single-cycle loss. 
The system is of moderate size (16 Uniboards and a backplane) and uses FPGAs in the slowest speed grade. This should help to keep the hardware and
power supply costs low. Further studies in this direction („Green Measures“) are detailled in section 6.

5 SCALABILITY

The multidimensional design space that needs to be considered for the specific requirements of radio astronomical facilities is spanned by the follow-
ing parameters:

• desired observing bandwidth,
• number of antennas,
• number of beams,
• required numerical precision,
• data rate of the surrounding infrastructure,
• recurring costs (power consumption, cooling, building costs, maintenance etc.)
• non-recurring costs (design effort, component costs, manufacturing, deployment etc.)

In the remainder of this section we will explore possibilities for increasing the performance of the system with respect to observing bandwidth, number
of antennas and number of beams, necessarily trading in arithmetical precision and costs. We’ll start on the micro-architectural level (FPGA circuitry)
and work our way up to the system level.

5.1 Alternative Arithmetic

Recalling (1) we can see that the dominant operation is a complex multiply, which when performed in Cartesian coordinates requires four multiplies
and two adds. Therefore, the number of multiplier hardmacros on the FPGA defines the upper limit in performance. The obvious idea is to perform
this operation in polar coordinates, which then takes the form

(5)

The expenses are then reduced to one multiply and one add.
However, the complex multiply is immediately followed by an add, which cannot be done (so easily) in polar coordinates. Thus, the result (scaled and
phase-shifted phasor) must be transformed into Cartesian coordinates immediately after the complex multiply. It is obvious that neither any further
multiply nor any trigonometric functions can be employed for this operation.
The method of choice is therefore the well-known CORDIC algorithm [8]. CORDIC can be used to transform a complex number from Cartesian to
polar coordinates and back. It is a multiplier-free, iterative shift-and-add operation that can be implemented as a pipeline for high throughput. In prin-
ciple, the architectural changes to the system would be as shown in Figure 22. Note that all other aspects of the beamformer as presented so far, such
as data paths, memory systems and flow control, remain unaffected.

So, the general idea is to implement all CORDIC units using the regular FPGA fabric and to pair each multiplier hardmacro with one CORDIC unit. In
this way, the number of CXM-macros (see section 4.5.5) would be increased by a factor of four compared to the previous approach. Likewise, the
overall chip performance would be increased by four, which could be used, for example, to compute four times the number of beams.
However, the CORDIC unit requires a certain amount of logic resources, depending on the desired precision. Available chip resources may put an
upper limit on this approach. This is detailed in the following section.

Figure 22: Beamformer System using Polar Coordinates
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5.1.1 The CORDIC Unit

Figure 23 shows the pipeline for transforming a complex number from polar coordinates to Cartesian coordinates (real and imaginary part). The nec-
essary scaling operation at the end is not accounted for. Instead, it can be pre-multiplied into the weightfactor magnitude (5) or be deferred to later
stages in the processing pipeline. Also, it is assumed that the phase β of the operand has been normalized to a range of . All operands
are processed as two’s complement fixed-point numbers.

As can be seen in Figure 23, both precision and expenses depend on the following quantities:

• the bitwidth K of the phase angle,
• the bitwidth L of real and imaginary components, and
• the number N of pipeline stages (iterations).

To a certain degree these quantities are correlated with each other. A high number of stages requires a certain bitwidth of the real and imaginary com-
ponents or otherwise all bits will be shifted out. Likewise a certain angular resolution must be provided or otherwise the comparisons will be meaning-
less.
In [8] we find: “For most ordinary purposes, 40 iterations (n = 40) is sufficient to obtain the correct result to the 10th decimal place.” This would
roughly correspond to IEEE754 SP-FP accuracy. Other than this it is hard to give an analytic error function over the above quantities. Therefore a bit-
accurate simulator was written in C to give visual representations of the error distribution. This simulator compares the outputs of the CORDIC pipe-
line to DP-FP results of the C library.
Figure 24 shows the relative error in percent of four selected configurations. The parameters K, L and N are shown next to the plots. In general, the
error is pronounced towards small magnitudes. With decreasing parameter values the error becomes larger, but more importantly, it is pronounced for
angles close to 0° or 90° irrespective of magnitude.

Figure 23: CORDIC Unit
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Resource consumption is most critical for the adders in the CORDIC pipeline. In the FPGA-fabric, adders are implemented using LUTs and the fast
carry chains. Altera FPGAs provide a certain number of ALMs (Adaptive Logic Module). Each ALM can be configured to provide two full-adders.
Thus, a 16-bit adder consumes 8 ALMs.

However, as we recall from Figure 10, each CXM is also paired with one M20K memory block. Thus, either ALMs or M20K blocks may become the
limiting factor for this approach. Table I lists the available resources for both the low-cost Arria-10 GX 1150 and the high-end Stratix-10 GX 2800.

Figure 24: CORDIC Relative Error Distribution
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Table II and Table III list the FPGA resources required for different configurations. Fundamental quantity is the number of implemented beamformer
cores, which each contain 16 CXMs and 20 M20K memory blocks (see section 4.5.2). In our traditional approach an Arria-10 GX 1150 allows 47
beamformer cores to be implemented. So we start the table with four times this number, or 188 beamformer cores.

The bottom row in Table II represents the same performance as the traditional approach, however, with a potentially reduced accuracy. It might still be
of interest if power consumption of the FPGA can be lowered using this kind of circuitry. This can be subject of further studies for deliverable D8.16,
(„green measures“).
The configuration using 94 beamformer cores is of higher interest since it would double the performance (see sections 5.3ff), again at a somewhat
reduced precision. All other configurations cannot be implemented. So, the optimistic goal of pairing each multiplier hardmacro with a CORDIC unit
cannot be reached without architectural changes.

For the Stratix-10 GX 2800 FPGA we start the table with the theoretical maximum number of beamformer cores, that is 11,520 / 16 = 720. Since the
number of ALMs only scales by a factor of 2.2 for the Stratix device, this method appears to be of little use on this plattform.

5.1.2 Conclusion

Performing the complex multiply in polar coordinates suffers from a high resource consumption and low precision. Still there might be configurations
and scenarios where this method can be used advantageously. This depends on application, chip architecture and downstream processing requirements
and is therefore simply an engineering decision. The problems largely stem from the inefficient adder-logic on FPGAs. Therefore, especially for low-
power ASIC-designs it might be worth to re-evaluate the method.

5.2 Alternative FPGAs

As advertised by Altera, it was planned from the start of the Uniboard2 project to initially use the low-cost Arria-10 device and later upgrade to a more
powerful, pin-compatible Stratix-10 device. As of now, however, there is no such device on the market [9]. Accordingly, there is very little information
about performance (maximum core or DSP clock frequency) available. We therefore assume that the device in question will be a Stratix-10 GX 2800
[10] and conservatively estimate that the core clock can be as high as 500MHz. As listed in Table I, there are 11,520 multiplier hardmacros and 11,721
M20K memory blocks on the chip. We further assume that all multipliers are used to construct beamformer cores and that other arithmetic units such
as format converters are made from fabric logic. Then we will have 180 beamformer cores.

5.3 Increasing the Number of Beams

5.3.1 Circuit-Level

In the following we assume that the number of beamformer cores is doubled to 94 (Arria-10 using CORDIC, trading in accuracy) or approximately
quadrupled to 180 (Stratix-10, at much higher chip costs).
In this section we assume further that the increase in processing power shall solely be used to double or quadruple the number of computed beams,
while keeping the observing bandwidth (384MHz), number of channnels (384) and number of antennas (512) constant. The obvious consequences are:

• the input data rate (per clock) remains the same,
• both the Input Fan-Out Register Tree (see Figure 6) and the Weightfactor Fan-Out Register Tree (see section 4.7) need to service twice or four 

times the number of beamformer cores and might need to be adapted,
• the size of the Weightfactor Memory (see Figure 15) increases in size,
• the output data rate per clock increases by a factor of two or four.

TABLE II: FPGA RESOURCE REQUIREMENTS (ARRIA-10 GX 1150)

Beamformer
Cores

18x19 Mult.
Hardmacros

CORDIC
Config. ALMs % of Chip M20K Mem.

Blocks % of Chip

188 3,008 A 2,526,720 591 3,760 139

188 3,008 B 1,106,944 259 3,760 139

188 3,008 C 613,632 143 3,760 139

188 3,008 D 354,944 83 3,760 139

94 1,504 C 306,816 72 1,880 69

47 752 B 276,736 65 940 35

TABLE III: FPGA RESOURCE REQUIREMENTS (STRATIX-10 GX 2800)

Beamformer
Cores

18x19 Mult.
Hardmacros

CORDIC
Config. ALMs % of Chip M20K Mem.

Blocks % of Chip

720 11,520 A 9,676,800 1037 14,400 123

720 11,520 B 4,239,360 454 14,400 123

720 11,520 C 2,350,080 252 14,400 123

720 11,520 D 1,359,360 146 14,400 123

360 5,760 C 1,175,040 126 7,200 61

180 2,880 C 587,520 63 3,600 31



28

While for the traditional Stratix-10 architecture all units scale linearly, we can reduce precision at several places in the Arria-10 CORDIC system to
the precision that the CORDIC units provide, in this case 12 bits. Each of the eight weightfactor memory banks therefore has a width of 2*12*16 =
384 bits and a depth of 4096 words. It can be constructed from 80 M20K memory blocks, for a total of 640 M20K memory blocks.
Since the number of antennas has not changed each beamformer core still produces one beam sample every 32 clocks. A beam sample consists of two
SP-FP numbers of 32 bits each. Combined output data rate of 8 beamformer cores is therefore 5.76Gb/s (Arria-10) or 8Gb/s (Stratix-10). Again we use
one Output Unit (see Figure 16) for 7 or 8 beamformer cores.
Hardware requirements are summarized in Table IV.

Looking at Table IV it appears to be possible to compute twice or four times the number of beams without changes to the architecture if we accept
reduced accuracy or higher chip costs.

5.3.2 System-Level
By simply replicating the entire system of 16 Uniboards (and the midplane), the number of beams can also be multiplied provided each system
receives the proper set of weightfactors [11]. The Uniboards performing the polyphase filterbanks are redundant, though.

5.4 Increasing the Observing Bandwidth

5.4.1 Circuit-Level
For this study we assume that the observing bandwidth shall be doubled (768MHz, Arria-10 CORDIC) or quadrupled (1536MHz, Stratix-10). Channel
bandwidth shall remain at 1MHz. That is, the increase in beamformer cores shall be used to compute the same number of beams from the same num-
ber of antennas, but on twice or four times the number of channels.
Since the filterbank design is not part of this workpackage we simply assume that it can be implemented on the respective plattform. However, we
have to examine the bitrates at the input and outputs, i. e., at the optical interfaces and on the midplane.
If we assume 8 bits per sample from the ADC, the input data rate for each filterbank-FPGA is 1,536e6*8*32 = 393Gb/s (Arria-10) or 786Gb/s
(Stratix-10). If we restrict ourselves to using current 40GbE technology, these kinds of bandwidth are not available at the optical connectors of the fil-
terbank-FPGAs alone. Thus, antenna connections must be distributed across the entire system, and routed via the midplane to the Uniboards that
implement the filterbanks. This is shown for the Stratix-10 case. We assume, however, a collection of external switches that aggregate the data streams
from the ADCs. An example configuration is shown in Figure 25.

TABLE IV: INCREASING THE NUMBER OF BEAMS

Architecture Observing
Bandwidth

# of
Antennas

# of
Beams

# of
18x19

Multipliers

# of
M20K

# of
Output
Units

Output Data
Rate (Gb/s)

Arria-10 CORDIC 384MHz 512 128 1,504 2,656 12 67.68

Stratix-10 384MHz 512 256 11,520 5,808 24 180.0

Figure 25: Aggregation Switches and Uniboards
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As can be seen, each filterbank-FPGA receives 8 antenna signals directly via its own optical interfaces. The remaining 24 signals must be routed
through the midplane from the beamformer-FPGAs. As we recall from Figure 3, there is exactly one FD lane between any given pair of beamformer-
FPGA and filterbank-FPGA. One direction is used to distribute the ADC samples, as shown in Figure 26.

As can be seen, the 512 antenna signals can nicely be routed to the filterbank-FPGAs provided that the link speed across the midplane can be set to a
net data rate of 12.288Gb/s.
In reverse direction, depending on precision, the required data rate can exceed physical capabilities of the transceivers and wires. Each filterbank-
FPGA needs to send 16 or 32 channels from 32 antennas to a given beamformer-FPGA. Required data rates are shown in Table V.

Thus, one can be optimistic about using 12-bit components for Arria-10 and 8-bit components for Stratix-10. Better accuracy for Stratix-10 will not be
feasible for a midplane of this size.
The Input Stage on each beamformer-FPGA architecturally remains the same, however, the rate at which complex samples arrive is increased to
512MS/s or 1GS/s. In the current architecture, consecutive samples in the input FIFOs (see Figure 5) go to the same memory block in the Memory and
CXM Stage (see Figure 10). Thus, one would need to increase the transfer rate (write cycles per second) beyond the set limits.
A solution to this problem could be to rearrange the chip resources. In particular, the beamformer core would need to be extended to include 32 instead
of 16 Memory and CXM Units. Obviously, the number of beamformer cores on each FPGA would then be halved. Data distribution for a given input
vector would then be as shown in Figure 27.

Figure 26: ADC Sample Distribution (½ Uniboard shown, other Half identical for remaining Antenna Signals)

TABLE V: REQUIRED DATA RATE FROM FILTERBANK-FPGA TO BEAMFORMER-FPGA

Architecture # of Channels Data Rate @ 16;16 Data Rate @ 12;12 Data Rate @ 8;8

Arria-10 CORDIC 16 16.384Gb/s 12.288Gb/s 8.192Gb/s

Stratix-10 32 32.768Gb/s 24.576Gb/s 16.384Gb/s

Figure 27: Data Distribution in Modified Beamformer Core
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In this way two complex samples are written per clock, bringing bus and memory clock rates back into the legal range. However, there are a number
of system implications that need to be considered:

• Depending on sample precision, the width of the input FIFOs increases. Also, register consumption of the Input Fan-Out Register Tree increases 
to 41,472 flipflops (2.4% on Arria-10).

• The memory in a beamformer core should be consolidated. For 12-bit components the total width of the memory is 768 bits. Thus the memory 
can be constructed using 20 M20K blocks. For the Arria-10 version, the beamformer unit would then consume a total of 1,128 M20K blocks 
including accumulators. For the Stratix-10 version, M20K blocks are not a critical resource.

• Width, depth and capacity of the Weightfactor Memory change significantly. The Weightfactor Memory has to provide 32 weights on 16 or 32 
channels in parallel. This amounts to a data bus of 12,288 bits (Arria-10) or 16,384 bits (Stratix-10). The depth is 1,024 such words. The Weight-
factor Memory can be built using 616 (Arria-10) or 820 (Stratix-10) M20K blocks.

• The Weightfactor Fan-Out Register Tree consumes 663,552 flipflops on the Arria-10 FPGA, or 39% of available resources. The CORDIC-pipe-
lines consume approximately 650,000 flipflops. At such a high usage percentage, routing might become a problem. For Stratix-10 this is not an 
issue because of the HyperFlex-feature (registers embedded in the routing channels).

• Each beamformer core now produces one beam sample every 16 clocks. This amounts to a bit rate of 1.44Gb/s (Arria-10) or 2Gb/s (Stratix-10) 
per beamformer core. Thus we use one Output Unit (see Figure 16) per four beamformer cores, for a total of 12 (Arria-10) or 24 (Stratix-10) 
interfaces.

Table VI shows a summary of performance and resource consumption of this approach.

5.4.2 System-Level

Provided that

• suitable external switches for the purpose as shown in Figure 25 are available,

• the digitized antenna signals are fed into the system as shown in Figure 26, and

• the necessary filterbanks can be implemented on the FPGAs

a collection of the original beamformer systems can be operated in parallel for processing larger observing bandwidths. Each system would then pro-
cess / discard a disjoint set of frequency channels. Again all but one of the Uniboards that are used for filtering are redundant.

In case implementing these large-bandwidth filterbanks is a problem a low-cost compromise could be to use Stratix-10 for the filterbank-FPGAs and
Arria-10 otherwise.

5.5 Increasing the Number of Antennas

5.5.1 Circuit-Level

In this section we examine if and how the number of antennas can be increased to 1,024 and 2,048, respectively. That is, the increased processing
power shall be used to process more antennas, but over the same bandwidth and for the same number of beams.

The obvious consequence is that the external aggregation switches need more ports, most of them with lower bandwidth. Per ADC we have 768e6 * 8
= 6.144Gb/s. For 2,048 antennas, the switches in Figure 25 should be replaced by switches that provide 32 10GbE ports and 6 40GbE ports, or equiv-
alent. Data distribution is then identical to Figure 26 except that the data streams across the midplane carry signals from multiple antennas.

On the filterbank-FPGAs twice or four times the number of polyphase filterbanks need to be implemented. Again we simply assume that this can be
done. For the data rate between any given pair of filterbank-FPGA and beamformer-FPGA the same considerations apply as listed in Table V, in this
case, however, depending on the number of antennas.

TABLE VI: INCREASING THE OBSERVING BANDWIDTH

Architecture Observing
Bandwidth

# of
Antennas

# of
Beams

# of 
Beamformer

Cores

# of
18x19

Multipliers

# of
M20K

# of
Output
Units

Output Data
Rate (Gb/s)

Arria-10 CORDIC 768MHz 512 64 47 1,504 2,052 12 67.68

Stratix-10 1,536MHz 512 64 90 11,520 4,060 24 180.0

TABLE VII: REQUIRED DATA RATE FROM FILTERBANK-FPGA TO BEAMFORMER-FPGA

Architecture # of Antennas Data Rate @ 16;16 Data Rate @ 12;12 Data Rate @ 8;8

Arria-10 CORDIC 1,024 16.384Gb/s 12.288Gb/s 8.192Gb/s

Stratix-10 2,048 32.768Gb/s 24.576Gb/s 16.384Gb/s
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For the Input Stage the sample rate is increased similar to section 5.4.1. Again a solution could be to build beamformer cores from 32 Memory and
CXM Units. The layout of one input vector from 2,048 antennas across 32 memory systems is shown in Figure 28. As in section 5.4.1, a beamformer
core memory can be built from 20 M20K blocks, for a total of 1,128 M20K blocks (Arria-10).

The Weightfactor Memory again has to provide 32 weightfactors in parallel, however, in this configuration only on 8 channels. Thus, for the Arria-10
CORDIC system this bus is 6,144 bits wide, for the Stratix-10 system 4,096 bits. The depth is 64*32 (Arria-10) or 64*64 (Stratix-10) such words. The
Weightfactor Memory can be built using 616 (Arria-10) or 824 (Stratix-10) M20K blocks.
The Weightfactor Fan-Out Register Tree consumes 331,776 flipflops on the Arria-10 FPGA, or 19% of available resources.
Each beamformer core produces one beam sample every 32 (Arria-10) or 64 (Stratix-10) clocks. This amounts to an average bit rate of 720Mb/s
(Arria-10) or 500Mb/s (Stratix-10). Thus we can use one Output Unit (see Figure 16) per 8 (Arria-10) or per 16 (Stratix-10) beamformer cores.
Table VIII shows a summary of performance and resource consumption of this approach.

5.5.2 System-Level
Multiple of the original beamformer systems can be operated in parallel to process more antennas. Provided, however, that there is a downstream
device that performs the final accumulation. As was detailled in section 4.8 there are six output stages on each beamformer-FPGA, each one connect-
ing to one 10GbE-line. Net data rate per line is 5.76Gb/s.
An example configuration could be four systems processing 2,048 antennas. The accumulation device shall also be built from Uniboards.
For this configuration, the outputs of four corresponding beamformer-FPGAs need to be summed up and sent off to the central compute facility. Thus,
the accumulating device needs 24 input-channels for each set of four beamformer-FPGAs. The output data rate is of course equal to that of a single
beamformer-FPGA, and requires again six 10GbE-channels.
As can be seen in Figure 3, each FPGA exposes 24 FD lines towards the optical transceivers, and 48 FD lines towards the midplane. By using break-
out-boards that simply connect 24 FD lines from the midplane to QSFP-cages, one Uniboard can accumulate the outputs of 3 beamformer-Uniboards.
Since a beamformer system contains 12 beamformer-Uniboards, we would need 4 accumulator-Uniboards, 8 breakout-boards and a special midplane
for this kind of post-processing.
Processing requirements are moderate. Each beamformer-FPGA outputs SP-FP complex beam samples at a rate of 360MHz / 32 * 47 = 528.75e6
numbers per second. Each summation requires 6 FP operations, corresponding to 3.1725GFlops, or roughly 10GFlops for each accumulator-FPGA.
This is well within reach.
Figure 29 shows a 3D sketch of a breakout board and the accumulation unit. The midplane has the same dimensions as in Figure 21.

Figure 28: Data Distribution for 2,048 Antennas

TABLE VIII: INCREASING THE NUMBER OF ANTENNAS

Architecture Observing
Bandwidth

# of
Antennas

# of
Beams

# of 
Beamformer

Cores

# of
18x19

Multipliers

# of
M20K

# of
Output
Units

Output Data
Rate (Gb/s)

Arria-10 CORDIC 384MHz 1,024 64 47 1,504 2,010 6 33.84

Stratix-10 384MHz 2,048 64 90 11,520 4,024 6 45.0
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Figure 29: Sketch of Breakout Board and Accumulation Unit
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5.6 Scalability Summary

On the microarchitectural level we have explored several points in the design space, as shown in Figure 30. The far-out points require the more expen-
sive Stratix-10 FPGAs. It stands to reason that this configuration can also implement other points in the spanned design space. We have also shown
how multiple beamformer systems can be operated in parallel to be suitable for certain scenarios in the SKA environment.

5.7 Alternative Architectures

One class of beamformers, called FFT-based beamformers, is not considered here since their use is mostly in radar mapping. Apart from the presented
architecture, which is commonly called “subband beamformer”, the most prominent other architecture is called “ring beamformer”. The different
architectures are shown in Figure 31, which was adopted from [13].

The obvious advantage of the ring architecture is its simplicity (the cross-connect is avoided) and the fact that the number of antennas scales easily.
However, the bandwidth of the ring connect (which also defines the maximum output rate) can quickly become a limiting factor when the number of
beams increases. If B beams are to be generated, then for each input sample B output samples need to be put on the ring. Thus, this architecture is most
suitable for single-beam beamformers. In case of the Uniboard2, the ring is a relatively low-bandwidth channel, so this architecture is probably not
optimal.

Figure 30: Design Space

Figure 31: Subband and Ring Beamformers
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6 GREEN MEASURES

6.1 Introduction

In this work the term “Green Measures” solely refers to methods for reducing the power consumption. Other aspects such as design for environment-
friendly manufacturing, safe disposal and recycling are not considered here.
Power consumption of computing machinery is affected by the following items:

1. Choice and design of the platform, chip technology,
2. required computing performance,
3. efficiency of the algorithms,
4. quality of implementation of the hardware, gateware, firmware and software,
5. presence or absence of power saving provisions.

6.1.1 Choice and Design of the Platform, Chip Technology

This has been done in another subproject, so it is not subject of this work. No recommendations regarding circuit desing or choice of components will
be given.

6.1.2 Required Computing Performance
In case of a large and expensive installation such as an observing station with many antennas the required computing performance is fixed and must be
provided under all circumstances. From a power consumption point of view it is best to operate a minimum set of systems at peak performance, rather
than operating a larger number of systems at lower computing performance. This implies that any design effort should be spent on achieving or
approaching peak performance of the individual systems.

6.1.3 Efficiency of Algorithms
An efficient algorithm computes the desired result with a minimum number of operations, or with the least expensive set of operations. This implies
that algorithm development should take machine capabilities into account. For example, DSP blocks are very power efficient and can operate at higher
frequencies than their fabric counterparts. Other quantities to minimize are data transfers, and storage space.
A complex sum of products leaves very little room for algorithmic optimizations. We have tried to use a different coordinate system (polar coordi-
nates) in order to simplify the complex multiplication (see section 5.1). However, due to the peculiarities of FPGAs this was not very successful (see
section 6.6). On other platforms such as full-custom ASICs this might be fundamentally different.

6.1.4 Quality of Implementation of the Hardware, Gateware, Firmware, and Software
An efficient implementation must avoid losses. Losses occur when all data is available, a processing element is free and still no activity takes place.
Losses include scheduling, communication and synchronization losses. From a power consumption point of view this represents a power waste since
any clock cycle that does not advance computation still consumes energy.
We have developed an architecture that avoids any losses and performs useful operations in every single clock. This was achieved by constantly
streaming the weightfactors along with their indices through the circuitry (see section 4.5.1). Bubble-free operation is also supported by special cir-
cuitry such as a double-buffered accumulator (see Figure 14).
The price to pay are relatively high hardware expenses, and with it power consumption. A way to reduce the hardware and power costs by architec-
tural means is outlined in section 6.5, and used to the maximum extent in the final design.
On digital CMOS circuits the major goal of a power-efficient implementation is to reduce the number of signal transitions. Methods include low-
power coding, clock gating, selective activation and more. Several of these methods are discussed in section 6.4.
On FPGAs the actual (micro-) implementation is to a large extent beyond the influence of the circuit designer. However, one can loosely steer opera-
tion by means of a large number of compiler switches. Effectiveness of such compiler-oriented power optimizations is detailled in section 6.7.

6.1.5 Presence or Absence of Power Saving Provisions

Saving power by switching off complete systems such as a server computer is relatively simple from a technical viewpoint, although overall power
down and power up procedures can be tricky, and increased wear of the components can be expected. Powering down individual components within
such a system is far more complicated and requires comprehensive design support in the power supply system, interconnect structure, firmware and
operating system. Applications must be aware of such platform changes and must be able (maybe even on-the-fly) to migrate processing tasks and data
streams from a powered-down component to an alive one. In this work we do not consider such scenarios, e.g. powering down individual Uniboards in
a rack or individual FPGAs on a given Uniboard. However, we examine the effects of using only parts of a given FPGA, and by that the ability of the
tools and the hardware to power down unused tiles (see section 6.8).

6.2 Tools and Procedures for Power Consumption Measurements

In the absence of a Uniboard2 hardware system all power consumption measurements of the gateware are estimates obtained from Altera design tools,
in particular from Altera PowerPlay. The tool flow, and methods to circumvent certain limitations of the Altera tools, are described in section 6.3.



35

6.3 Tool Flow

It seems that Quartus II 15.0 (Q15) does not support gate-level timing simulation for Arria 10 designs. For an accurate power consumption estimation
using PowerPlay, a precise description of toggle activities per node is required. These are normally recorded during a gate-level timing simulation. 
This short application note describes how to obtain a .vcd-file (Value Change Dump) from gate-level functional simulation. This simulation method
generally assumes a propagation delay of 0 and might therefore not capture all transitions. The hope is that this is still more aligned with the physical
behavior of the chip than a default toggle rate.
Despite the reduced complexity, gate-level functional simulation can still be too time consuming to be practical. For complex designs one has to resort
to using PowerPlay with less accurate default toggle rates.

6.3.1 Procedure
The steps are outlined using a small test design. Assumed we have set up a Q15 project for an Arria 10 10AX115U4F45I3SGES part with just one
VHDL-file:

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity tripleadd is
  port ( clk : in  std_logic;
         a   : in  std_logic_vector (23 downto 0);
         b   : in  std_logic_vector (23 downto 0);
         c   : in  std_logic_vector (23 downto 0);
         d   : out std_logic_vector (23 downto 0) := x"000000");
end entity;

architecture rtl of tripleadd is

  signal areg, breg, creg : std_logic_vector(23 downto 0) := x"000000";

begin

process (clk)
begin
  if (rising_edge(clk)) then
    areg <= a;
    breg <= b;
    creg <= c;
    d    <= areg + breg + creg;
  end if;
end process;

end rtl;

Using Processing ĺ Start ĺ Start Test Bench Template Writer we generate a test bench skeleton and fill it arbitrarily:

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
USE IEEE.STD_LOGIC_ARITH.ALL;
USE IEEE.STD_LOGIC_UNSIGNED.ALL;

ENTITY tripleadd_vhd_tst IS
END tripleadd_vhd_tst;

ARCHITECTURE tripleadd_arch OF tripleadd_vhd_tst IS

SIGNAL clk : STD_LOGIC := '0';
SIGNAL a, b, c : STD_LOGIC_VECTOR(23 DOWNTO 0) := x"000000";
SIGNAL d : STD_LOGIC_VECTOR(23 DOWNTO 0);

COMPONENT tripleadd
PORT ( clk : IN  STD_LOGIC;
         a   : IN  STD_LOGIC_VECTOR(23 DOWNTO 0);
         b   : IN  STD_LOGIC_VECTOR(23 DOWNTO 0);
         c   : IN  STD_LOGIC_VECTOR(23 DOWNTO 0);
         d   : OUT STD_LOGIC_VECTOR(23 DOWNTO 0));
END COMPONENT;

BEGIN

clk <= NOT clk AFTER 25 ns;
inst1 : tripleadd PORT MAP ( a => a, b => b, c => c, clk => clk, d => d );

always : PROCESS (clk)
BEGIN
  IF (FALLING_EDGE(clk)) THEN
    a <= a + 1;
    b <= b + 3;
    c <= c + 5;
  END IF;
END PROCESS always;

END tripleadd_arch
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For NativeLink we need to fill in some forms. Afterwards the “Settings”-form should look like shown below. Note that we are using the built-in
Altera-ModelSim Starter Edition.

Clicking on the “Test Benches...”-Button will open the following dialog box (shown after making changes):

Figure 32: Settings for Simulation

Figure 33: Test Bench Settings

Check this Radio Button

Click this Button

Click this Button
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Clicking on the “New..”-Button will open the final dialog box for this step:

We could now perform an RTL simulation.
However, our goal is to run gate-level simulations so we need to make further changes. These relate to the EDA Netlist Writer. First we need to
instruct it to generate a tcl-script which in turn instructs the simulator to record toggle activities of all nodes. Further we instruct it to generate a .do-
script for a gate-level functional simulation. After all the changes the dialog boxes look like shown in Figure 35 through Figure 37.

Figure 34: New Test Bench Settings

Figure 35: EDA Netlist Writer Settings

Check this box and make sure
to enter the instance name.
Otherwise errors might
occur during simulation.

Enter path and click “Add”

Click this Button

Again make sure to enter the proper instance name

Click this Button
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When clicking on “Script Settings”, a dialog box should pop up:

After clicking on “More EDA Netlist Writer Settings”, change the option “Generate netlist for functional simulation only” from Off to On.

Now the Q15 tools “Analysis & Synthesis”, “Fitter (Place and Route)” and “EDA Netlist Writer” must be executed. Before we do this, we should set
up a minimal constraints file defining the clock and a few delays (so that the Timing Analyzer won’t complain):

# Create a simple 50ns clock
create_clock -period 50 -waveform {0 25} -name clk [get_ports clk]
set_input_delay  -clock { clk } 10 [get_ports {a[*]}]
set_input_delay  -clock { clk } 10 [get_ports {b[*]}]
set_input_delay  -clock { clk } 10 [get_ports {c[*]}]
set_output_delay -clock { clk } 10 [get_ports {d[*]}]

Additionally we might then want to make all I/O assignments. Now we can step through the tool flow above.
After quitting ModelSim we will find a .vcd-file at simulation/modelsim/tripleadd.vcd.

Figure 36: VCD File Script Settings

Figure 37: More EDA Netlist Writer Settings

Change this Option
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Using this .vcd-file we can now configure PowerPlay. The “Settings” dialog box should then look like in Figure 38. 

While running PowerPlay it will report:
Info (222002): Starting scan of VCD file simulation/modelsim/tripleadd.vcd (0 ns to End of File) for signal
static probabilities and transition densities
Info (222003): Finished scan of VCD file simulation/modelsim/tripleadd.vcd (0 ns to End of File) for signal
static probabilities and transition densities

When PowerPlay has finished execution it will report a high “Power Estimation Confidence”, which was the goal of this exercise (see Figure 39a).
When using a default toggle rate instead, the confidence is low: “user provided insufficient toggle rate data” (see Figure 39b). Note also the fairly large
dynamic power estimate differences.

Figure 38: PowerPlay Settings

Figure 39: PowerPlay Power Analyzer Summary

a.) Using the .vcd-file b.) Using a default toggle rate of 12.5%
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6.4 Power-Efficient Gateware Implementation

Power consumption of a digital CMOS circuit can be divided into static and dynamic power consumption [14]. Static power consumption occurs with-
out signal activity and is mostly due to leakage currents. Dynamic power consumption occurs during a signal level change at the output of a logic cir-
cuit. Static power consumption can hardly be influenced by a gateware designer except when given the possibility to selectively power down parts of
the chip. In order to reduce dynamic power dissipation, the goal is to reduce overall switching activity within the design while maintaining functional-
ity and performance. Several techniques have been developed over time [15], and a few will be discussed in this section.

6.4.1 Traveling Enable-Signal on Pipeline Registers

In the simplest case operands are continuously clocked through pipeline stages consisting of registers and combinational logic as shown in Figure 40a.
However, operation semantics might require that patterns that do not represent valid data are flagged. Such flags can also be used to prevent the regis-
ters from changing state, as shown in Figure 40b.

Power savings can come from two sources:

• the register clock is gated, which keeps internal nodes and output signals from changing state,
• there are no signal changes througout the combinational logic (if present), nor at the inputs of the receiving register.

These savings are hard to quantify, since they depend strongly on the functionality of the design, and on the ratio of valid to invalid data slots. The
method also presents costs to the design, since the clock-enable signals can have a large fan-out (depending on the width of the registers) and can pres-
ent routing and/or timing problems. In the extreme case the clock-enable signals must be duplicated using additional registers.
In the design presented here there are several large pipeline structures which theoretically are subject to this optimization. This includes the fan-out
trees for the samples and the weightfactors, and the adder trees (see Figure 12). However, both the weightfactor stream as well as the sequence of com-
plex products do not have bubbles, so the method does not apply here.
This is different for the input fan-out register tree (see Figure 6 and Figure 45) since any given input vector has only one destination and so only one
path through the tree is used. Thus, for a binary tree only log2N instead of 2*N-1 registers are actually used, N being the number of leaves (ports). Two
test designs have been made, each including one instance of the input fan-out tree. TreeTest includes clock-enable signals as shown in Figure 45.
For the design named TreeTest_NoEn clock-enable signals are absent and so all registers are clocked all the time. Both designs were run through
the tools as described in section 6.3 to obtain accurate toggle rates. The results are shown in Table IX.

Significant power savings can be obtained despite the fact that the pipeline stages do not contain any combinational logic. Thus, from a power con-
sumption perspective, any FPGA-design should be examined carefully, and clock-enable signals should be included where applicable.

6.4.2 Organization of on-chip Memory Systems

FPGAs typically offer memory blocks implemented as hard-macros. Sizes can vary but are often in the order of 16 to 20kBit. Typically these blocks
are true dual-port, independent-clock RAMs with a memory cell array of 512 × [32|36|40] bits. In order to increase data rate (at the expenses of access
latency) the blocks include selectable registers at the address and data inputs as well as at the data outputs. The blocks further include data multiplexers
so that from an outside view the organization is configurable, i.e. from 512 × 32 to 1024 × 16, 2048 × 8 and so forth to finally 16384 × 1. A simplified
diagram of a memory block is shown in Figure 41a.

Figure 40: Traveling Enable Signal

TABLE IX: INPUT FAN-OUT REGISTER TREE POWER CONSUMPTION

Enable-
Signals Logic Utilization Registers
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Power Consumption
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Power Consumption

Present 12,897 ALMs 34,719 1.366MT/s 76.98mW 2202.51mW 2280.67mW

Absent 12,775 ALMs 34,252 37.050MT/s 529.78mW 2230.12mW 2761.08mW
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As long as the desired memory depth does not exceed that of the ×1-configuration large memory systems can be built by horizontal concatenation of
memory blocks up to the chip capacity (see Figure 41b).

On the VHDL-level, the gateware designer has two choices for including hard-macros: inference, or explicit instantiation. The former is often pre-
ferred because of its convenience and portability, leaving the concrete implementation details to the synthesis tools.
For example, the weightfactor memory bank in Figure 15 can easily be described as follows (only the read-port is shown):

type wfmemtype is array(0 to 2047) of std_logic_vector(607 downto 0);

signal wfmem_bank : wfmemtype;

signal intdata, outdata: std_logic_vector(607 downto 0);

signal addr : std_logic_vector(10 downto 0);

signal rden : std_logic;

process (clk)

begin

  if (rising_edge(clk)) then

    if (rden = '1') then

      intdata <= wfmem_bank(conv_integer(addr));

    end if;

    outdata <= intdata;

  end if;

end process;

This example uses both the address and the data output registers of each block. The general synthesis rules inside an EDA tool such as Altera Quartus
for generating a memory system from the behavioral description above are of course unknown to the average designer, but it has been observed that
the tools tend to use the internal data multiplexers and construct a system as in Figure 41b from 61 memory blocks organized as 2048 × 10 bits. This
appears to be the case irrespective of compiler settings (optimization mode performance vs. power).
From a power consumption point of view, the problem with this architecture is that for any access, all blocks are activated and therefore consume
power. In contrast, consider the alternative implementation in Figure 42. Here, only 16 memory blocks are active for a given access by means of the
Enable-signals from the address decoder. However, several implications need to be considered:

• a separate MUX-stage in the FPGA-fabric has to be implemented, consuming logic resources and reducing the power savings from the selective 
activation,

• the latency will be increased by one for the same clock frequency, so it is a prerequisite that the overall design can tolerate this,
• data bus granularity is now 40 bits, leading to increased consumption of memory blocks (64 vs. 61),
• the design effort is increased since the structure must be coded by hand and the memory blocks should be instantiated instead of inferred.

In order to evaluate the power consumption two test designs have been made: MemTest and MemTest_IP. Both are initiated with the same data.
MemTest uses the behavioral description and is synthesized using memory blocks in 2048×10-configuration. MemTest_IP is implemented as
shown in Figure 42 using M20K IP-blocks generated by QSys in a 512×40-configuration. PowerPlay was run over both designs as described in sec-
tion 6.3. The results are shown in Table X. MemTest_IP uses only about 75% of the dynamic core power that MemTest consumes, despite the
added multiplexer stage.

Figure 41: Memory Block and Memory System

TABLE X: POWER CONSUMPTION OF DIFFERENT MEMORY ARCHITECTURES

Design ALMs Registers M20K 
Blocks

Average Toggle
Rate

Core Dynamic
Power Consumption

Device Static
Power Consumption

Total
Power Consumption

MemTest 16 56 4 8.736MT/s 2.09mW 2198.2mW 2207.4mW

MemTest_IP 48 98 4 5.974MT/s 1.57mW 2198.2mW 2206.8mW

Memory Cell
Matrix

Data MUX

Data MUX

A
dd

re
ss

 R
eg

A
dd

re
ss

 R
eg Address

Port B
Address
Port A

Data Out
Port A

Data In
Port A

Data In
Port B

Data Out
Port B

M
 W

ords

a.)

M
em

or
y

B
lo

ck

M
em

or
y

B
lo

ck

M
em

or
y

B
lo

ck

M
em

or
y

B
lo

ck

M
em

or
y

B
lo

ck

M
em

or
y

B
lo

ck

K * N Bits

Common
Address

b.)

Input Reg

Output Reg

K Blocks

N Bits



42

6.4.3 Low-Power Coding on Address Buses

In case addresses are incremented across large ranges the numeric coding can be important. The Gray code toggles only one bit from any number to its
successor. In our case, for example, the weightfactor memory is read out sequentially over and over again. Thus, addressing the weightfactor memory
using a Gray code counter might reduce the toggle rate. Without knowledge of the internal structure of the memory blocks, however, gate-level simu-
lations should be carried out in order to quantify the effects.
The Gray code can be obtained by using a standard binary counter and an XOR-stage directly behind it. For an 11-bit counter, the operation is as fol-
lows:
gray_code[10:0] = bincode[10:0] xor 0_bincode[10:1]

In case the additional latency can be tolerated this logic can be placed in an extra pipeline stage. Then the maximum clock frequency is most likely not
affected.
A test design that includes the weightfactor memory as described in section 4.6 with the modifications outlined in section 7 has been made (WFMem-
Test) . It is parametrizable and allows binary and Gray code address counters to be used. PowerPlay was run over all design variants as described in
section 6.3. In order to reduce simulation time, only one memory bank was included. The results are summarized in Table XI.

As can be seen, the effects are not significant. Dynamic power consumption is dominated by the memory arrays and data buses. Although the fan-out
is relatively large, the narrow address bus does not influence the toggle rate much. The use of Gray code will probably pay off only for very wide
buses.
Memory systems design recommendations: From a power dissipation perspective memory systems should be implemented as shown in Figure 42.
If applicable Gray coding can be included in the design since hardware expenses are very low.

6.4.4 Low-Power Coding on Parallel Single-Endend (off-chip) Buses

Although ultimately not used in the design this method should be discussed for completeness. Two problems exist with wide parallel single-ended
buses, especially if they drive external connections: power consumption, and simultaneous switching noise (SSN). Both are caused by signal level
transitions. SSN occurs when a large number or all of the signals change in the same direction at the same time. Then, the common ground potential
can rise (ground bounce) or the power supply can drop in voltage.
Single-ended signaling has largely been replaced by differential (current-mode) transmission, wide parallel single-ended buses have been replaced by
multi-gigabit serial connections. This has all but eliminated the SSN problem. However, some application domains still exist for single-ended buses,
such as SDRAM channels or legacy buses such as VME or PCI.

Figure 42: Alternative Memory System Implementation

TABLE XI: WEIGHTFACTOR MEMORY BANK POWER CONSUMPTION

Address
Format

Memory Generation
Method

M20K Blocks
used

Average Toggle
Rate

Core Dynamic
Power Consumption

Device Static
Power Consumption

Total
Power Consumption

Binary Instantiation 64 29.693M/s 240.36mW 2212.98mW 2453.96mW

Gray Code Instantiation 64 29.043M/s 238.60mW 2213.08mW 2452.31mW
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Bus Invert Coding (BIC) addresses both problems at the expenses of one additional signal line [16]. For any two consecutive bit patterns to be placed
on a parallel bus, the method counts the number of transitions. If this number is greater than N/2, N being the bus width, the data item is inverted and
the additional signal line is activated. The receiver can easily reconstruct the original data values. This limits the number of simultaneous transitions to
N/2+1. The decrease in average power consumption depends on the bus width and on the statistics of the data, and is specified by the inventors to be
in the range of 15% for 16-bit buses.

6.5 Architectural Changes for Increased Power Efficiency

The distinguishing feature of the presented architecture is the constant stream of weightfactors along with their indices for all frequency channels
through the circuitry. This allows any input vector to be assigned to any beamformer core for processing, which in turn allows the most complete
usage of hardware resources. However, the price to pay is a very wide bus, and a very wide 8-to-1 MUX within each beamformer core (see Figure 8).
This structure has become problematic during routing, causing the tools to terminate because of routing congestion.

The problem can be alleviated by splitting the beamformer cores in two groups, one for the lower frequency channels (0-3) and one for the upper fre-
quency channels (4-7). However, the total number of beamformer cores must then be divisible by two. In our case we can use 46 out of 47 cores. The
performance target can still be reached. As derived in section 2, the total number of complex multiplications per FPGA per second is 2.62144*1011. At
a clock frequency of 360MHz, the performance of the modified design is 2.6496*1011 complex multiplies per second.

The benefit we get is a significantly reduced broadcast structure which poses far less problems during routing, and also consumes less power.

Power savings: 3W.

In theory the splitting into groups can be continued, however, the number of beamformer cores that can be used must then be divisible by 4, 8 and so
forth. A maximum of 47 beamformer cores is not the most fortunate outcome in this regard. Using only 44 cores out of 47 already misses the perfor-
mance targets.

6.6 CORDIC Arithmetic

When looking at Table II and Table XVIII, any attempt to use CORDIC arithmetic as discussed in section 5.1 is hopeless. Consumption of fabric logic
is already far too high when using standard complex multipliers. Nevertheless a test design has been made to more precisely determine actual resource
consumption. A stripped-down version of the beamformer system with only 16 beamformer cores or 8 per group was assembled.

For this design we assume that the complex samples arrive as 16-bit magnitude (positive fixed-point number) along with a 16-bit phase. The phase has
been normalized to a range of ±45°. Two bits are used to define the quadrant of origin. Thus, the angle part is a 14-bit two’s complement fixed-point
number.

For simplicity we assume that the weightfactors are of the exact same format. The necessary scaling factor for the correction of the CORDIC pipeline
has been pre-multiplied into the weightfactor magnitudes. Magnitudes are multplied by a 16×16 into 14 bits multiplier hardmacro. Angles are added
into a 15-bit two’s complement number spanning the range of ±90°.

Using Altera QSys, a CORDIC unit has been generated that outputs 24-bit real and imaginary components. This is compatible with the standard ver-
sion (see section 7.1). A target clock frequency of 360MHz was specified which resulted in 27 pipeline stages. The unit consumes 4292 LUTs.

A two-stage de-normalization unit that uses the original quadrant bits transforms the vector into the final position.

Note that the accuracy of the CORDIC-approach is below that of the standard version. The width of the operands has been chosen such that they are
compatible with the QSys parameters. The results are listed in Table XII (the Q15 fitter terminated prematurely).

The already stripped-down version by far exceeds the available resources. No attempt was made to compile even smaller beamformer systems.

In order to obtain at least a vague idea about power consumption two test designs have been made that include just a single CXM-unit (see Figure 10). 
CXMTest_Standard uses complex multipliers as usual, CXMTest_CORDIC performs the multiplication in polar coordinates and uses the COR-
DIC-pipeline as described above to transform the results back to Cartesian coordinates. The tool chain was run for the two designs as described in sec-
tion 6.3. The results are listed in Table XIII.

This puts the final nail in the CORDIC coffin. However, this outcome must clearly be attributed to the dismal adder performance on FPGAs, both
regarding performance and area. For full-custom or gate-array designs this can be fundamentally different.

TABLE XII: TEST DESIGN USING CORDIC ARITHMETIC

Design ALMs Registers M20K Blocks
used

DSP Blocks
used

Core Dynamic
Power Consumption

Device Static
Power Consumption

Total
Power Consumption

CORDIC 905,485
(212% of Chip)

1,083,748 No Data 256 - - -

TABLE XIII: STANDARD VS CORDIC ARITHMETIC

Design ALMs Registers M20K Blocks
used

DSP Blocks
used

Core Dynamic
Power Consumption

Device Static
Power Consumption

Total
Power Consumption

Standard 101 321 1 2 41.8mW 2200.5mW 2245.2mW

CORDIC 1,953 3,459 1 1 (0.5) 311.5mW 2220.6mW 2535.1mW
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6.7 Compiler Options for Increased Power Efficiency

The Q15 tools offer 6 general optimization modes:

• Balanced (Normal flow)

• Performance (High effort - increases runtime)

• Performance (Aggressive - increases runtime and area)

• Power (High effort - increases runtime)

• Power (Aggressive - increases runtime, reduces performance)

• Area (Aggressive - reduces performance)

Normally the tool chain has been used with “aggressive performance” optimization to meet the clock target. The results are presented in section 7.4.
For this test run the “high effort power” optimization method has been chosen, and numerous other compiler switches have been set for maximum
power optimization. The results are shown in Table XIV, together with results from the performance-optimized design (cf. Table XX).

Thus, the power savings come mostly from a reduction of static power consumption and amount to 1.932W (5.7%). However, we can observe a
significant drop in clock frequency, which is shown in Table XV (cf. Table XIX).

As can be seen, the target clock frequency is missed by a wide margin. Considering the relatively small power savings this method appears to be of lit-
tle use, at least for this design.

6.8 Scaling Performance vs. Power Consumption

In harsh environments such as around desert stations it might become necessary at times to reduce the heat dissipation because of cooling problems.
Still it might be desirable to conduct observations in these situations. Performance must then be reduced, for example by using only a subset of anten-
nas, or by processing only a subset of frequency channels. Not always might the lucky case occur that entire Uniboards can be powered down. We
examine the question: is it better to reduce clock frequency, or is it better to reduce the active chip area? Several test designs have been made, and run
through PowerPlay with a default toggle rate of 12.5%. The results are shown in Table XVI.

The results are to a certain degree inconclusive, which might be due to the inaccurate power estimation when using PowerPlay with default toggle
rates. One could have expected that when using less cores, device static power consumption should decrease more strongly because more unused tiles
can be powered down. The recommendation leans towards scaling the clock frequency, which has the advantage that it can be done without FPGA
reconfiguration.

TABLE XIV: PERFORMANCE VS. POWER OPTIMIZATION

Optimization
Target ALMs Registers M20K Blocks

used
DSP Blocks

used
Core Dynamic

Power Consumption
Device Static

Power Consumption
Total

Power Consumption

Performance 250,546 941,022 1,678 1,472 22.876W 7.921W 33.924W

Power 251,363 940,951 1,678 1,472 22.854W 6.010W 31.992W

TABLE XV: TIMING ANALYSIS FOR POWER-OPTIMIZED DESIGN

Variant Setup-Slack [ns] TNS [ns] Maximum System 
Clock [MHz]

Slow 100°C -4.155 -4,496.6 144

Slow 0°C -4.723 -10,079.5 133

Fast 100°C -2.418 -151.1 192

Fast 0°C -1.369 -59.7 241

TABLE XVI: SCALING FREQUENCY VS. AREA

Design ALMs Registers
M20K
Blocks
used

DSP
Blocks
used

Core Dynamic
Power

Consumption

Device Static
Power

Consumption

TxF Dynamic
Power

Consumption

TxF Standby
Power

Consumption

Total
Power

Consumption

188MHz, 46 Cores 238,589 893,033 2,372 1,472 13.188W 4.290W 2.241W 0.885W 20.605W

94MHz, 46 Cores 238,747 892,909 2,372 1,472 7.294W 3.470W 2.241W 0.885W 13.891W

360MHz, 24 Cores 153,293 524,232 1,036 768 12.763W 4.116W 2.241W 0.885W 20.007W

360MHz, 16 Cores 103,752 351,412 876 512 9.166W 3.571W 2.241W 0.885W 15.864W

360MHz, 8 Cores 55,066 181,906 716 256 4.998W 3.089W 2.241W 0.885W 11.214W
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7 IMPLEMENTATION

The predominant goal of the implementation is to meet the performance targets. This requires the design to be implemented such that the tools (syn-
thesizer, mapper, router etc.) can

• fit all necessary logical elements on the chip,
• route all connections, and
• meet all target clock frequencies.

This must be achieved with reasonable margin to avoid tool failure after (minor) modifications.
To a second degree power consumption must be taken into account. The methods discussed in section 6 have been consequently applied wherever they
would not reduce performance, or pose serious problems to the tools.

7.1 Implementation Restrictions

For a high performance FPGA design, one has to realize that signals typically spend much more time on the wire or interconnect structure than
through logical elements. This has two implications:

• whenever the algorithm can tolerate it, deep pipelining should be used.
• The fan-out of signals should be kept small, ideally it should not be larger than 2.

Together with the architectural changes discussed in section 6.5 this results in a number of modifications to the general architecture as presented
throughout section 4.
Two further concessions to the limited hardware resources and/or tool capabilities had to be made:

• the width of the weightfactors had to be reduced from 19 bits to 17 bits per component, otherwise the IP generator consumed 4 DSP blocks per 
complex multiply. Thus, the outputs of each weightfactor memory bank are 555 bits wide instead of 619 bits.

• The operand width at the input of the adder tree had to be reduced from 33 to 24 bits to achieve both routing and timing closure.

Lastly it should be noted that no infrastructure for loading the weightfactor memories is present. This is most reasonably done when the surrounding
environment and all interfaces are known. Currently these memories are implemented as ROMs, and the contents are specified via RAM-Init-files.

It has proven difficult to meet timing requirements for all four timing models (slow silicon @ 100°C / 0°C, fast silicon @ 100°C / 0°C). However, this
can at least partially be attributed to the fact that the chips are still engineering samples, and that timing characteristics are preliminary. This view is
supported by the large deviations in performance of the different models.

Thus, attempts to increase performance by architectural means (adding pipeline stages etc.) have been stopped when the “fast silicon” was within lim-
its (with respect to setup-times). Final work on meeting timing is most reasonably postponed to the point in time when actual hardware is available, or
when timing characteristics have settled.

7.2 Actual Architecture

Most importantly, the beamformer cores are arranged in two groups for frequency channels 0-3 and 4-7. Consequently there are two separate input and
weightfactor fan-out register trees. The input FIFOs are 64 bits wide to service the two fan-out trees in parallel, in return however, they can operate on
half the clock frequency. Finally the input data format must be changed so that for each antenna a sample from channel n is followed by the sample
from channel n+4. In essence two beamformer systems as described in section 4, but half the size, have been placed on one FPGA, as shown in Figure
43.

Figure 43: Actual Architecture
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The modified input stage is shown in Figure 44. Note that this modification does not increase hardware consumption, instead it reduces routing efforts
by means of the reduced clock rate. The new data format should not pose any problems to the filterbank FPGAs.

The input fan-out register tree, as opposed to Figure 6, is a full binary tree to better meet timing. It has 32 leaves (ports). Unused logic due to uncon-
nected ports will be removed by the synthesizer. The scheduler reads all input FIFOs, hands out VALID-flags, keeps track of the channel number and
generates a 5-bit destination that represents a round-robin assignment for the 23 beamformer cores. For the operational principle see Figure 45.

Figure 44: Modified Input Stage

Figure 45: Input FIFO Read Ports, Scheduler, and Fan-Out Tree (One of Two)
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For the weightfactor fan-out structure, instead of a tree a pipeline was chosen since it produced less problems during routing. In order to bridge the dis-
tances on the chip without flight times getting too long three stages per tap were chosen. To account for the geometric arrangement of memory blocks
on the chip, the weightfactors are inserted in a staggered way. This is shown in Figure 46. Note that two such structures are present, and so the flipflop-
count is roughly 302,000.

Figure 46: Weightfactor Fan-Out Pipeline
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7.3 VHDL and QSys Source Files

The design includes two kinds of sources: VHDL-files, and IP-blocks generated using Altera QSys. The hierarchy of the source files is shown in Table
XVII. QSys-files are shown in red. Note that modules synthesized by the tool chain during compilation are not included.

The design constraints (mostly clock definitions) are in beamformer.sdc, the package file bf_defs.vhd includes some constant definitions.

TABLE XVII: SOURCE FILE HIERARCHY

Top Level Level 1 Level 2 Level 3 Level 4 Level 5 See

beamformer Figure 43

input_stage Figure 44

input_ethchan Figure 44

input_fifo Figure 44

input_phy Figure 44

input_txfctrl -

input_phyres -

csfan Figure 45

scheduler Figure 45

bf_unit Figure 43

bf_core Figure 7

wimux Figure 8

channel_fifo Figure 8

wimux_ctrl Figure 9

mux_wi_2_1 -

cxm_stage Figure 11

cxm_unit Figure 10

cxm Figure 10

adder_tree Figure 12

par_add Figure 12

acc_stage Figure 14

wffan Figure 46

wfmem Figure 15

wfmem_bank Figure 15

wfmem_slice Figure 42

output_stage Figure 20

output_unit Figure 16

output_ctrl Figure 17

fxp_to_sp Figure 16

mux_80_4_1 -

mux_80_2_1 -

output_ethint Figure 18

output_ethchan Figure 18

output_fifo Figure 18

output_phy Figure 18

output_txfctrl Figure 19

output_atxpll Figure 18

output_phyres Figure 18



49

7.4 Results and Performance

The majority of compiler options have been set for maximum performance, at the expense of runtime and chip area. The consumed chip resources are
listed in Table XVIII. Note the almost complete usage of DSP blocks.

The multi-corner timing analysis gave the results as shown in Table XIX. TNS is the sum of all occuring negative setup slack within a given clock
domain. One can use this value to gauge the amount of design effort that will be necessary to meet timing. The reported TNS values in this case can be
considered very small. Note also that the “slow 100°C”-model is slightly faster than the “slow 0°C”-model, which is unexpected and potentially an
indication that timing characteristics will change.

PowerPlay was run using a default toggle rate of 12.5%. The results are shown in Table XX. Thus, the 48 beamformer FPGAs in the complete system
have a power consumption of 1,628W.

8 SUMMARY

We have presented a beamformer design for the Uniboard2, in the first instance optimized for Arria 10 FPGAs. The distinguishing feature of the archi-
tecture is a constant stream of weightfactors along with their indices through the circuitry. This allows operation at a very high efficiency. The com-
plete system contains 16 Uniboards including a filterbank. According to first implementation results the system should be able to generate 64 beams
from 512 antennas over an observing bandwidth of 384MHz. Several methods for scaling the performance have been presented. Green measures for
reducing the power consumption have been included in the design.

TABLE XVIII: OCCUPIED CHIP RESOURCES

Type Total # on Chip Used %

ALM 427,200 250,546 59

Register 1,708,800 941,022 55

RAM Block 2,713 1,678 62

DSP Block 1,518 1,472 97

HSSI Rx Channel 96 16 17

HSSI Tx Channel 96 6 6

PLL 176 17 10

Pin 928 55 6

TABLE XIX: TIMING ANALYSIS

Variant Setup-Slack [ns] TNS [ns] Maximum System 
Clock [MHz]

Maximum Input
Clock [MHz]

Slow 100°C -0.628 -227.9 294 156.25

Slow 0°C -0.659 -227.7 291 156.25

Fast 100°C 0.3 - 360 156.25

Fast 0°C 0.7 - 360 156.25

TABLE XX: POWERPLAY RESULTS

Average Toggle
Rate

Core Dynamic
Power Consumption

Device Static
Power Consumption

TxF Dynamic
Power

Consumption

TxF Standby
Power

Consumption

Total
Power Consumption

47.312MT/s 22.876W 7.921W 2.241W 0.885W 33.924W


