Cryogenic LNA Characterization: GARD Experience

Erik Sundin Group for Advanced Receiver Development

Outline

- Using a SIS junction as shot-noise source
 - Theory, design of the chip, hardware and measurements
- Our cryogenic setup
- Results
- Conclusions

Variable Temperature Load (VTL)

• Pros

- "True" Y-factor method provides good accuracy
- Cons
 - Slow, change of physical temperature required
 - Temperature differences (load-DUT) requires cable, cause losses
 - Errors of actual physical temperature in load

$$T_{source} = \frac{T_{load}}{L_{cable}} + T_{physical_cable} \left(1 - \frac{1}{L_{cable}} \right)$$

Cold Attenuator (CA)

- Pros
 - Fast, noise diode
- Cons
 - Difficult to make loss estimation of input cable due to temperature gradient
 - Accuracy of temperature sensor
 - Errors of actual physical temperature in attenuator

$$\begin{split} T_{source} &= T_{NS}G_{cable}G_{att} + T_{cable}G_{att} + T_{att} \\ &= \left(T_{NS}G_{cable} + T_{cable}\right)G_{att} + T_{att} \\ &= \left[\frac{T_{NS}}{L_{cable}} + T_{cable}\left(1 - \frac{1}{L_{cable}}\right)\right]\frac{1}{L_{att}} + T_{att}\left(1 - \frac{1}{L_{att}}\right) \end{split}$$

Using a SIS junction as shot-noise source?

- Advantages
 - Voltage controlled output power
 - No change in physical temperature
 - No temperature gradient
 - Directly connected to DUT
 - Based on fundamental constants

Superconductor-Insulator-Superconductor (SIS) tunnel junction

Design of the chip

RF output SIS Equivalent circuit ् 🕴 🔯 Tuning Perfect coupling between junction and output **Bias-T** Simulation of different bias/matching networks Detailed simulation of chosen approach Production of chip

Design of the chip

- Equivalent circuit
 - Perfect coupling between junction and output
 - Bias-T
- Simulation of different bias/matching networks
- Detailed simulation of chosen approach
- Production of chip

Measurement setup

Considerations and sources of errors

- Considerations
 - Chain of components
 - Dynamic resistance \neq Rn
 - Complex formula (Tn≈5.8 K/mV)
 - Mismatch, $Rn \neq 50\Omega$
 - Coth-term bias voltage and junction temperature

Considerations and sources of errors

Measurements

- Still room for improvements
 - Coupling, Microstrip-SMA
- Indication of repeatability better than ± 0.05 K Measured output power for

Cryogenic LNA measurement setup

- Cold Attenuator method
- CTI 1020 closed cycle 12K
- Improved cold-plate
 - Required thermal decoupling to reduce temperature fluctuations
- Allan Variance measured with Agilent PNA
 - CW sweep, 20001 points, 10Hz IF BW

Chalmers University of Technology

• Low power budget

Conclusion

- A different approach to a noise source for NF measurements has been evaluated
 - Estimated potential accuracy is ± 0.2 K compared with ± 0.7 K for our CA-method
 - Further work is needed
- Measurement setup
 - Operation temperature 10.5-11K
 - Pessimistic setup, DUT is better than we measure

