

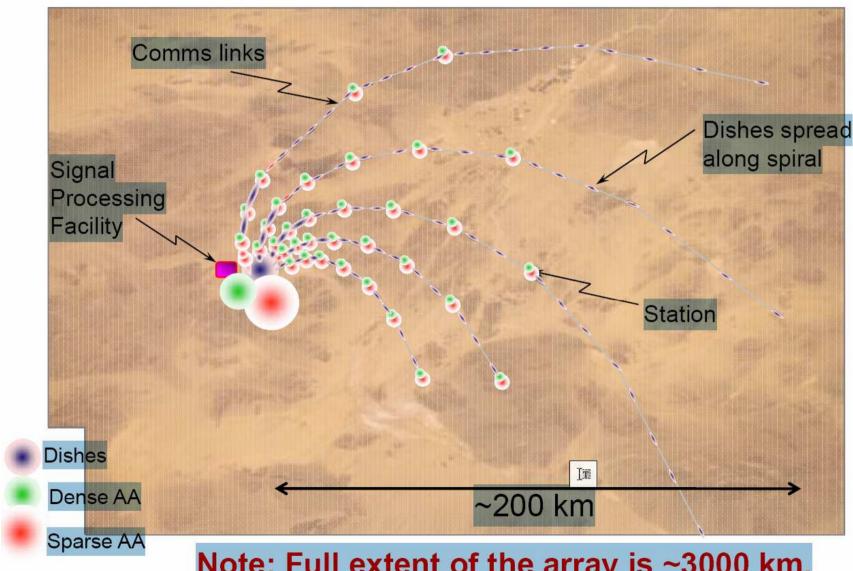
Noise measurements for the SKA

Neil Roddis SKA Program Development Office

The Square Kilometre Array: An industrial scale radio telescope

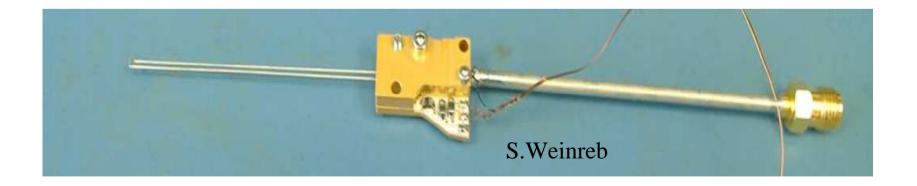
- Thousands of 12 15 metre dishes
- Dense aperture arrays
- Sparse aperture arrays
- Extending over thousands of kilometres in Australia or Southern Africa
- Expected cost €1.5 bn
- Design driven by science requirements

SKA Antenna Technology

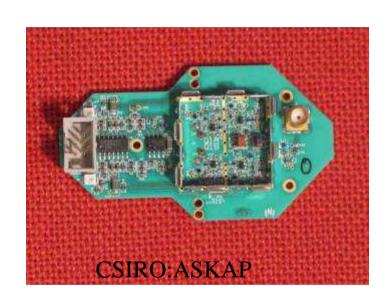


SKA Layout

SPDO



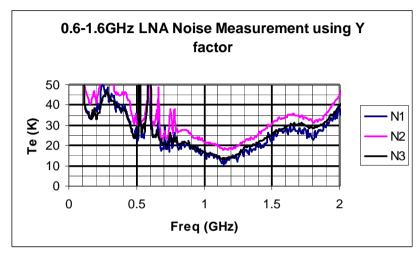
Note: Full extent of the array is ~3000 km.


LNAs for the SKA (1)

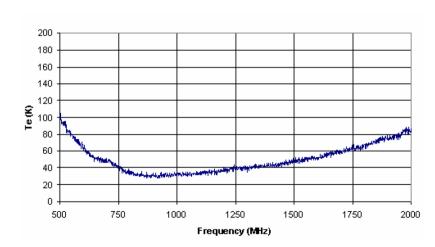
- Thousands of cryogenic LNAs for the dish antenna systems.
- Millions of room temperature LNAs for the Dense Aperture arrays.
- Thousands of room temperature LNAs for the sparse aperture arrays and phased array feeds (?).

LNAs for the SKA (2)

- Cryogenic: differential 300 Ω and singleended 50 Ω.
- Room temperature: differential 300 Ω and 100 150 Ω , single-ended 50 Ω and 100 Ω .
- Highly integrated LNAs will be essential for dense aperture arrays.

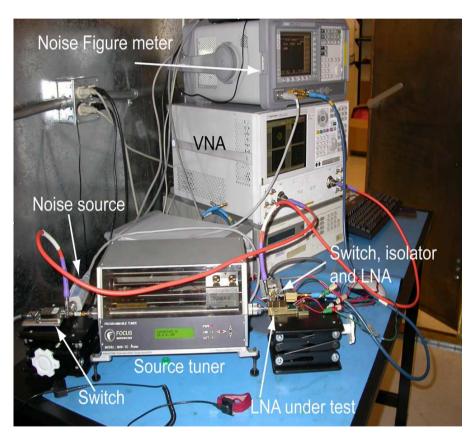

Do we need very low noise?

- Major selling points for the SKA:
 - Large Ae/Tsys
 - High survey speed [proportional to (Ae/Tsys)²]
- For a given Ae/Tsys: cost proportional to Tsys
- For a given fixed cost: Ae/Tsys proportional to 1/Tsys
- Conclusion:
 - WE NEED THE LOWEST NOISE WE CAN GET!


SKA LNA measurement challenges

SPDO

- Differential LNAs:
 - Room temp
 - Cryogenic
- Non 50 Ω
- Mass production:
 - Thousands (cryogenic)
 - Millions (room temp)


Gawande: CalTech

Shaw: CSIRO

Development and type testing

- Very thorough test of prototypes and smallscale production runs
- Fully test samples throughout production: including cryogenic test

U. Calgary

Mass production testing

- 100 % testing of LNAs including cryogenic LNAs for dish wide band feeds
- Automated test systems will be essential
- Trained semi-skilled personnel

Dense aperture array production testing

- Build on the good work at ASTRON
- LNA test must be fully automatic
- Learn from the mobile phone manufacturers?

The Antenna/LNA interface is also critical

- Losses must be minimized
- Impedance matching is also critical, especially for phased arrays
- We need to be able to measure the noise performance of the integrated antenna element(s) or feed with the LNA(s).

Weinreb CalTech

Summary

SPDO

- The SKA is providing some interesting challenges in noise measurement:
 - Differential LNAs
 - Non-50 Ω LNAs

cryogenic and room temperature

- Automated measurements: cryogenic and room temperature
- Mass production measurements
- Integrated antenna/LNA noise measurement

