Interoperability in Radio Interferometry

Software

S. Bourke
21 May 2012

Contents

1 Introduction

2 Python Interfaces to Interferometry Packages
21 AIPS / ParselTongue . . . ... ...............
22 Casa/IPython . .......... .. ... ..... ...
2.3 Combined AIPS/Casa Python Environment. . . . . . . .
2.3.1 Distribution . . ... ... .. .. ..........

3 Data Storage in Interferometry Packages

4 Calibration Transfer
4.1 Internal Data Formats ... ... ..............
42 Implementation . .. .....................
43 End to End Processing of VLBl DatainCasa . . . . . ..

5 Conclusion

5.1 Perspective on Future Use of Interoperability . . . . . . .

= W W W W N

N G O



1 Introduction

Many software packages exist for the purpose of processing radio inter-
ferometric data. Prominent examples include AIPS, Casa, Miriad and
Difmap. Each package has its own particular strengths and weaknesses,
and in many cases it is desirable to use more than one package in the end
to end processing of an astronomical dataset. A common such use case is
the use of AIPS to perform the initial calibration of a dataset, followed by
the use of Difmap for further editing, calibration and imaging. Similarly,
the use of Casa’s advanced imaging capabilities such as W-Projection
(Cornwell et al., 2005), Wide-band Imaging (Rau and Cornwell, 2011),
and A-Projection (Bhatnagar et al., 2008) may be desired following cal-
ibration of the data using AIPS’ robust routines. Traditionally, the soft-
ware packages have been used independently: data is exported from
one software in a commonly understood format (usually FITS (Hanisch
et al., 2001)) before being imported in the other software package. This
report covers work done to facilitate interoperability of the software
package AIPS and Casa. A single scripting environment, and a facil-
ity for the transfer of calibration meta-data were developed. The former
allows a single pipeline or script to use both packages simultaneously.
The latter allows calibrations to be transferred from AIPS to Casa with-

out exporting and importing the often extremely large datasets.

2 Python Interfaces to Interferometry Packages

Python interfaces are available for both AIPS and Casa. The first goal
of the interoperability project was to facilitate the a single environment
from which a user would have access to AIPS and Casa. In this sec-
tion an overview of each packages python integration is presented fol-
lowed by a description of combined environment that was developed
to allow usage of both packages simultaneously. Finally a binary Parsel-
Tongue/Obit distribution is reported on.



2.1 AIPS/ParselTongue

Natively, AIPS uses POPS as its shell. Python access is provided by
ParselTongue (Kettenis et al., 2006), developed under the ALBUS project.
ParselTongue accomplishes its interfacing with AIPS via complete exter-
nal mechanisms. That is, no AIPS code is used or AIPS libraries linked
against. ParselTongue directly ! interacts with AIPS storage files for ac-
cess to data and task parameter setting. AIPS tasks are run from Parsel-
Tongue by invoking the task executables via Python’s OS module.

2.2 Casa/IPython

Casa is integrated with Python at a much lower level than AIPS. Casa’s
functionality is contained in libraries and IPython extended to provide
access to these routines. Unlike AIPS, Casa tasks can not be run from

the operating system level, they must be linked at the application level.

2.3 Combined AIPS/Casa Python Environment

Due to the tight integration of Casa with Python, it is simpler to bring
ParselTongues features to Casa than vise versa. This was accomplished
by building Obit and its dependencies with the version same tool-chain
version as Casa and using Casa’s version of Python to build Parsel-

Tongue.

2.3.1 Distribution

The use of ParselTongue from within Casa requires ParselTongue and
it's dependency Obit which in turn brings many package dependencies
to be build with binary compatibility with Casa. Casa is distributed

in an isolated manner including all its library dependencies. It does not

IThe Obit library is used as a layer on top of the binary file formats



use the local system libraries. This simplifies the distribution of a Parsel-
Tongue binary distribution by limiting the number of target platforms
to those which Casa provides, namely Linux 32-bit, Linux 64-bit and
Mac. Initially, a Linux 32-bit binary distribution of ParselTongue is pro-
vide which when extracted to the Casa directory, provides ParselTongue
functionality to Casa.

3 Data Storage in Interferometry Packages

With a single execution environment established, the next hurdle is data
interoperability. AIPS and Casa use different storage formats. The ini-
tial solution is to use FITS as a intermediate format, as both packages
support the format. However for the large visibility dataset than are
produced by the latest generation of interferometers, this method is not
acceptable. An alternative solution is presented in the following section.

4 Calibration Transfer

As described in Section 1, it can be desirable to make use of the extensive
calibration routines present in AIPS, followed by the advanced imaging
routines of Casa. The closed loop calibration technique known as Self
Calibration (Readhead and Wilkinson, 1978) which is frequently used in
radio astronomy iteratively uses these two processes in a feedback loop,
whereby an initial calibration is performed, the data are imaged, this
initially poor image is as an input model to recalibrate the data, and the
sequence repeated until convergence is achieved. For such a process is
to be performed with AIPS’ calibration routines and Casa’s imaging rou-
tines the visibility data must be passed from AIPS to Casa, and Images
back from Casa to AIPS. The latter case of passing images from Casa to
AIPS is not a problem. Images can be exported from Casa in FITS format

which can be imported in AIPS. The size of these images are typically in



the order of a few megabytes. The transfer of visibility data from AIPS
to Casa can, however, represent a major I/O bottleneck, with data sizes
from modern interferometers often ranging from hundreds of gigabytes
to several terabytes.

To make the above scheme feasible we developed a calibration con-
version tool which reads the AIPS internal calibration tables, interprets
them, and generates corresponding Casa caltables. Calibration (AIPS
Solution, and Calibration tables) and bandpass tables are supported.
ParselTongue is used for reading AIPS tables and both pyrap, and cas-
apy are supported for writing Casa caltables. A Casa task has been
developed using this functionality, simplifying the process for the end

user.

4.1 Internal Data Formats

AIPS and Casa have quite different internal calibration philosophies,
however, for the purpose of complex gain, bandpass, and delays, their
table storage formats are compatible. In both packages a solution is es-
sentially represented as a complex number for complex gain, and band-
pass, and a real number for delay. Rates are not handled by Casa but a
workaround will be described in the following section.

4.2 Implementation

The conversion tool is implemented in Python. The stand alone (non-

casapy) version is invoked from the command line as follows:

Usage: trans_cal <userno> <indisk> <cno> <inver> \

<ms> <outcal> [-b|-s] [antfile]

where the first four arguments specify the AIPS calibration table, argu-
ment five and six the equivalent Measurement Set and CalTable. A -b
specifies a bandpass table while -s specifies a solution table, otherwise



a calibration table is assumed. antfile specifies a file containing the
mapping of the antennas from AIPS to Casa which isn’t necessarily a
one to one relationship.

ParselTongue’s Wizardry module is used for performance reasons
when accessing AIPS tables. Pyrap, the python interface to casacore
is used to write the caltable. Unlike AIPS, Casa requires caltables to
be regular in time and include entries for all antennas. For this reason
the tool reads the entire table before writing the Casa caltable. Dummy
entries are entered in the caltable when a corresponding AIPS entry does
not exist. These dummy entries are flagged as invalid. Internally the
data is stored in a python dictionary containing numpy arrays. Blank
serialized tables are stored in the tools module from which to generate
the initial tables.

A Casa task was also developed based on this stand alone tool, with
the pyrap code been ported to use casapy. The same functionality is then
presented to the user via the familiar Casa task mechanism.

CASA <4>: default importaipscal
———————— > default(importaipscal)

CASA <5>: inp

———————— > inp()

# 1importaipscal :: Convert AIPS calibration tables to MS cal tables.

vis = ? # name of input visibility file

caltable = ’ # Basename of output table(s)

userno = 0 # AIPS userno

indisk = 0 # AIPS disk number

cno = 0 # AIPS catalog number

inver = 0 # AIPS table version

mode = ’CL? # Calibration mode

antfile = 7?2 # Text file providing AIPS to Casa
# antenna mapping



async = False # If true the taskname must be starte

# using importaipscal(...)

The output of the conversion tool is graphically represented in Fig-
ure 4.2. A normalized bandpass table is generated and is seen to be in
complete agreement with it’s AIPS counterpart.

Phase rates are not currently supported in Casa. This can be ad-
dressed by generating high resolution calibration (CL) tables in AIPS and
interpolating the fringe fitting solutions. The resulting table can then be
converted to a Casa gain and delay table.

4.3 End to End Processing of VLBI Data in Casa

Using this tool in conjunction with the EVN archive, end users can pro-
cess EVN data entirely in Casa, without the need to have AIPS installed
on their workstation. This is facilitated by ParselTongue 2.0’s AIPSLite
features which allow ParselTongue to run without AIPS being present.
To accomplish this, ParselTongue downloads the FITLD executable from
NRAOQO'’s server, loads the EVN pipeline’s calibration tables into AIPS
format and then converts them to Casa caltables. With amplitude cal-
ibration and fringe fitting performed in JIVE by the EVN pipeline, the
user can proceed to self calibrate and image their data.

5 Conclusion

A combined Python based environment was implemented, allowing for
a single Python script to be written which can access both AIPS and Casa
routines. Data interoperability is accomplished by each package having
its own copy of the visibility data and the calibration meta-data being
transferred by means of a conversion utility. A Casa interface was put
on this tool to allow it to be seamlessly used from within the combined

environment. The major drawback to this approach is that the visibility



Bandpass: Antenna 6L

T T T T T T
P Aips
1 - — Casa -
0.8 | \ -
Y
0.6 - -.,\I i
\
|
0.4 - .
0.2 - -
0 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16
Bandpass: Antenna 6L
T T
Aips
1k Casa .
0.8 - B
0.6 -
0.4 .
0.2 -
0 | | | | | | |
0 2 4 6 8 10 12 14 16

Figure 1: Graphical representation of a bandpass table converted from
AIPS to Casa format. In the upper plot a normalized AIPS table is com-
pared with an unnormalized Casa version. In the lower plot, the out-
put of the conversion tool is show, generating an amplitude-normalized
Casa table.



data is stored twice. This however is not uncommon in interferometry

software and may be seen as acceptable in many cases.

5.1 Perspective on Future Use of Interoperability

Casa is targeted as the future interferometry package. AIPS, however
is still in wide use and has kept pace with much of the recent advances
in interferometers. It is currently often desirable to process data from
the instruments being presently deployed (EVLA, LOFAR) with AIPS
for performance reasons, AIPS being significantly faster than Casa for
much of the data processing work-flow. Obit, a tool that provides a C
interface to AIPS data structures is also developing rapidly and is being
used to process EVLA data. It seems possible that interoperability be-
tween the packages is to become a fact of life. Currently Measurement
Set access in Obit is one of the missing parts of the ecosystem. In fu-
ture, it might be desirable further insulate the interferometry algorithms
from the storage format as Obit has done. This however, often becomes
difficult as the data formats are often driven by a particular packages
algorithmic requirements. In any case it is clear that currently, the op-
timal routines for the various stages of the data processing work-flow
are dispersed amongst the various software packages. For this reason

interoperability is desired by the user if not by the package developers.

References

S. Bhatnagar, T. J. Cornwell, K. Golap, and ]J. M. Uson. Correcting
direction-dependent gains in the deconvolution of radio interferomet-
ric images. A&A, 487:419-429, Aug. 2008.

T. J. Cornwell, K. Golap, and S. Bhatnagar. W Projection: A New Algo-
rithm for Wide Field Imaging with Radio Synthesis Arrays. In P. Shop-
bell, M. Britton, and R. Ebert, editors, Astronomical Data Analysis Soft-



ware and Systems X1V, volume 347 of Astronomical Society of the Pacific
Conference Series, page 86, Dec. 2005.

R.]J. Hanisch, A. Farris, E. W. Greisen, W. D. Pence, B. M. Schlesinger, P. J.
Teuben, R. W. Thompson, and A. Warnock, III. Definition of the Flex-
ible Image Transport System (FITS). A&A, 376:359-380, Sept. 2001.

M. Kettenis, H. J. van Langevelde, C. Reynolds, and B. Cotton. Parsel-
Tongue: AIPS Talking Python. In C. Gabriel, C. Arviset, D. Ponz,
and S. Enrique, editors, Astronomical Data Analysis Software and Sys-
tems XV, volume 351 of Astronomical Society of the Pacific Conference
Series, page 497, July 2006.

U.Rau and T.]. Cornwell. A multi-scale multi-frequency deconvolution
algorithm for synthesis imaging in radio interferometry. A&A, 532:
A71, Aug. 2011.

A. C.S. Readhead and P. N. Wilkinson. The mapping of compact radio
sources from VLBI data. Ap]J, 223:25-36, July 1978.

10



