

Estimation of Uncertainty in Noise Measurements Using Monte Carlo Analysis: A Practical View

Juan Luis Cano University of Cantabria, Spain juanluis.cano@unican.es Juan Daniel Gallego Centro Astronómico de Yebes, Spain jd.gallego@oan.es

RadioNet-FP7 Engineering Forum Workshop

Low Noise Figure Measurements at Cryogenic and Room Temperatures

Chalmers University, Gothenburg, Sweden 23-24 June, 2009

Centro Astronómico de Yebes

NATIONAL RADIO ASTRONOMY OBSERVATORY CHARLOTTESVILLE, VIRGINIA

ELECTRONICS DIVISION INTERNAL REPORT NO. 285

ACCURACY OF NOISE TEMPERATURE MEASUREMENT OF CRYOGENIC AMPLIFIERS

NRAO EDIR # 285 Resurrected!

J. D. GALLEGO AND M. W. POSPIESZALSKI

FEBRUARY 1990 (Published April 1991) (RadioNet FP7 special edition)

NUMBER OF COPIES: 150

- Outline
 - Introduction
 - Input parameters for Monte Carlo analysis
 - Example 1: Ambient noise, high (15 dB) ENR noise source
 - Example 2: Ambient noise, low (5 dB) ENR noise source
 - Example 3: Ambient noise, hot and cold (LN2) Loads
 - Example 4: Cryogenic noise, cold attenuator method
 - Software
 - Conclusions

Introduction: Monte Carlo method

Monte Carlo Method

- Statistics over a large number of random trials:
 - 1. Input values randomly generated (according with the accuracy constraints)
 - 2. Simulated measurement
 - 3. Statistics on results \rightarrow estimation of the accuracy
- Implemented:
 - Accuracy of noise sources and cold temperatures
 - Reflection coefficients
 - Amplifier gain
 - Available gain ≠ Transducer gain
 - Change in Γ (case of noise diodes)
 - Radiometric noise (finite BW and t)
 - Noise parameters (dependence of noise on input Z)
 - Receiver gain accuracy (from calibration to measurement)
 - Receiver non-linearity
- Not implemented (yet):
 - Receiver "drift"
 - Dependence of non-linearity on signal level

- Input parameters for Monte Carlo method
 - A normal distribution is assumed for each parameter affected by inaccuracy (NIST Tech. Note 1297) [4]
 - Mean (µ): nominal value provided by the manufacturer
 - Uncertainty (u_i) : provided by the manufacturer (= k· σ)
 - Standard deviation (σ): is the uncertainty divided by the coverage factor
 - Coverage factor (*k*): provided by the manufacturer or from a guess
 - k = 3 (99.73%), k = 2 (95.45%), k = 1.645 (90%)...
 - Reflection coefficients generated as:
 - Magnitude: worst case from measurements or data provided by the manufacturer
 - Phase: randomly generated with a uniform distribution in (0, 2π)
 - In solid state NS the states ON and OFF are not independent

$$\Gamma_{cal_{OFF}}^{r} = \Gamma_{cal_{ON}}^{r} + \Gamma_{cal_{diff}} e^{-j\phi_{cal_{diff}}^{r}}$$

- DUT S-parameters generated with random phases
- Receiver noise parameters assuming an isolator at the input
- DUT noise parameters <u>can</u> be included

This is how a noise source is built

Noise Source

- Large difference in reflection coefficients at diode output $\Gamma_{\text{diff}} = \Gamma_{\text{ON}} \Gamma_{\text{OFF}}$
- Difference in reflection coefficients reduced by twice L_{attn} at NS output
- $\Gamma_{\text{NSdiff}}(dB) = \Gamma_{\text{diff}}(dB) 2 \cdot L_{\text{attn}}(dB)$
- The diode noise (when ON) is added to the thermal noise of the attenuattor:

$$- T_{cold} = T_{amb} (not T_0)$$

- $T_{hot} = T_{amb} + T_0 \cdot 10^{ENR/10}$; (T₀ =290 K by definition)

Example: reflection coefficient of NOISE COM diode noise source

NOISE COM NC346KA (0.1-40 GHz) reflection change

NOISE COM NC346KA (NO ATT)

NOISE COM NC346KA + 10 dB ATT. (0.1-40 GHz) reflection change

NOISE COM NC346KA (10 dB ATT)

* Radio Net

SEVENTH FRAMEWOR

NOISE COM NC346KA (0.1-40 GHz) reflection change

NOISE COM NC346KA (NO ATT)

NOISE COM NC346KA + 10 dB ATT. (0.1-40 GHz) reflection change

NOISE COM NC346KA (10 dB ATT)

ALMA 4-12 GHz Amplifier (used for the examples)

ALMA 4-12 GHz Amplifier

ALMA 4-12 GHz Amplifier

Workshop on Low Noise Figure Measurements at Cryogenic and Room Temperatures

adioNet

- Example 1: Noise measurement at RT
 - Calibration NS with high ENR (N4002A Agilent Tech., ENR = 14dB)
 - Measurement NS with high ENR (N4002A Agilent Tech., ENR = 14dB)
 - Receiver (N8975A Agilent Tech.) with isolator at input
 - DUT: Amplifier from ALMA Band 9 FI (4 12 GHz), results at 8 GHz

Measured Gain of Amplifier (dB)						
Parameter Value						
Mean (µ)	33					
Uncertainty (2 σ)	0.65					

Measured Noise of Amplifier (K)					
Parameter Value					
Mean (µ)	54.65				
Uncertainty (2 σ)	46.9				

- Example 2: Noise measurement at RT
 - Calibration NS with low ENR (N4000A Agilent Tech., ENR = 5dB)
 - Measurement NS with low ENR (N4000A Agilent Tech., ENR = 5dB)
 - Receiver (N8975A Agilent Tech.) with isolator at input
 - DUT: Amplifier from ALMA Band 9 FI (4 12 GHz), results at 8 GHz

Measured Gain of Amplifier (dB)						
Parameter Value						
Mean (µ)	33					
Uncertainty (2 σ)	0.54					

Measured Noise of Amplifier (K)					
Parameter Value					
Mean (µ)	54.2				
Uncertainty (2 σ)	13.95				

23-24 June 2009 Gothenburg, Sweden

• Comparison of real measurements: Examples 1 and 2

Comparison of real measurements: Examples 1 and 2

• Some dependences in T_e uncertainty for RT measurements

- Example 3: Measurement at RT with H&C loads
 - Hot and cold loads are independent

- Cold load (model MT7118A Maury Microwave)
 - $\Gamma_{\rm mcmax}$: SWR = 1.10 (-26 dB) in the 4 12 GHz range
 - T_{od} = 85 K
 - $\Delta T_{oc} = 1.2 \text{ K}$
- Hot load (model 2695A Maury Microwave)
 - $\Gamma_{\rm mhmax}$: SWR = 1.06 (-30 dB) in the 4 12 GHz range
 - T_{oh} = 297 K
 - $\Delta T_{oh} = 0.5 \text{ K}$

• Example 3: Measurement at RT with H&C loads

Cold load (model MT7118A Maury Microwave)

Hot load (model 2695A Maury Microwave)

- Example 3: Noise measurement at RT
 - Calibration NS with low ENR (N4000A Agilent Tech., ENR = 5dB)
 - Measurement with Hot and Cold loads (Maury Microwave)
 - Receiver (N8975A Agilent Tech.) with isolator at input
 - DUT: Amplifier from ALMA Band 9 FI (4 12 GHz), results at 8 GHz

Measured Gain of Amplifier (dB)						
Parameter Value						
Mean (µ)	33					
Uncertainty (2 σ) 0.68						

Measured Noise of Amplifier (K)				
Parameter	Value			
Mean (µ)	55.12			
Uncertainty (2 σ)	27.56			

Workshop on Low Noise Figure Measurements at Cryogenic and Room Temperatures

23-24 June 2009 Gothenburg, Sweden

• Example 4: Noise measurement at Cryo (T=12.5K)

- Example 4: Noise measurement at Cryo (T=12.5K)
 - Calibration NS with low ENR (N4000A Agilent Tech., ENR = 5dB)
 - Measurement NS with high ENR (N4002A Agilent Tech., ENR = 14dB)
 - Attenuation input pad 15 dB (attenuator + connectors +...)
 - Same receiver and DUT as in previous examples, results at 8 GHz

Measured Gain of Amplifier (dB)						
Parameter Value						
Mean (µ)	33.5					
Uncertainty (2σ) 0.7						

Measured Noise of Amplifier (K)				
Parameter	Value			
Mean (µ)	6.05			
Uncertainty (2 σ)	1.72			

Workshop on Low Noise Figure Measurements at Cryogenic and Room Temperatures

23-24 June 2009 Gothenburg, Sweden

• Some dependences in T_e uncertainty for Cold Attenuator

Error in physical temperature of attenuator

Error in attenuation of input pad

• Some dependences in T_e uncertainty for Cold Attenuator

• Summary of results

Measured Gain of Amplifier (dB)							
	Roo	Cryo Temp					
Parameter	Example 1 Example 2 Examp		Example 3	Example 4			
	High ENR NS Low ENR NS H&C Loads		Cold Atten.				
Mean (µ)	33	33	33	33.5			
Uncertainty (2 σ)	0.65 0.54 0.68 0.7						

Measured Noise of Amplifier (K)						
	Roo	Cryo Temp				
Parameter	Example 1 Example 2 Example		Example 3	Example 4		
	High ENR NS Low ENR NS		H&C Loads	Cold Atten.		
Mean (µ)	54.65	54.2	55.12	6.05		
Uncertainty (2 σ)	<u> </u>					

• Software

- Programs developed in *MathCAD* and *Matlab* to perform calculations
- Examples 1, 2 and 3 can be directly run with (for examples 1 and 2, set parameters Lattn and Δ Lattn to zero, and Tp = Tamb):
 - NoiseError_MonteCarlo_ColdAtt.mcd (MathCAD)
 - NoiseError.m (Matlab)
- Example 4 can be directly run with:
 - NoiseError_MonteCarlo_HCLoads.mcd (MathCAD)
 - NoiseError_HCLoads.m (Matlab)
- The four programs are given to be shared with RadioNET community.

• Software

Input data for the programs

NS N4(A000	NS N4	002A	Receiver N8975A Am		Amplifi	Amplifier (DUT)	
Parameter	Value	Parameter	Value	Parameter	Value	Parameter	Value	
ENR (dB)	5.2	ENR (dB)	14.1	Trec (K)	1500	S11 (dB)	-3.5 (RT)	
ΔENR (dB)	0.14	ΔENR (dB)	0.13	Tiso (K)	297	011 (00)	-3.5 (Cryo)	
k_ENR	2	k_ENR	2	Гrmax (dB)	-20	S21 (dB)	33 (RT) 33.5 (Cryo)	
Гmax (dB)	-29	Гmax (dB)	-24	B (MHz)	4	S12 (dB)	-50 (RT)	
Гdiff (dB)	-48	Гdiff (dB)	-24	t (sec.)	1	512 (UD)	-47 (Cryo)	
Tamb (K)	297	Тр (К)	297 (RT)	ΔGc (dB)	0.17	S22 (dB)	-14 (RT) -13 (Crvo)	
∆Tamb (K)	1		12.5 (Cryo)	k_Gc	1.645	Tasks (14)	45.97 (RT)	
k Tamb	2	ΔTamb (K)	1	∆G (dB)	0.05	Imin (K)	3.74 (Cryo)	
-		k_Tamb	2	k_G	1.645	gn (S)	7.62e-4 (RT)	
Monte	Carlo	Lattn (dB)	U(RI)) Re(Zopt) (Ω) Im(Zopt) (Ω) 71 1 72 72 72 72 72 72			0.740-5(CIYO)	
Parameter	Value					77 9 (Crvo)		
Iterations (n)	1000	ΔLattn (dB)	0.15 (Cryo)			15.7 (RT)		
k	2	k Lattn	2			71.1 (Cryo)		

Explanation of all these parameters can be found in the programs

Conclusions

- Practical examples of noise uncertainty calculation with Monte Carlo analysis have been presented both at room and cryogenic temperatures
- Room temperature measurements (for high input reflection amplifier)
 - Best: \rightarrow low ENR noise source
 - Good: \rightarrow high ENR noise source + attenuator or isolator
 - Not as good: \rightarrow hot and cold lab standards (uncertainty very dependent on Γ max)
 - Bad: \rightarrow high ENR noise source
- Cryogenic temperature measurements
 - Cold attenuator method is good for high input reflection amplifiers
 - High DUT gain needed to minimize contribution of (high) receiver noise
 - ENR and cold temperature critical for accuracy (0.2 dB per K and 1 K per K respectively)
 - Effect of noise parameters contributes ~0.2 K to the total uncertainty 2σ (1.72 K)
 - DUT's S11 does affect S21 uncertainty but does not affect Te uncertainty

- References
 - [1] "Fundamentals of RF and Microwave Noise Figure Measurements", Application Note 57-1. Agilent Technologies. 2006
 - [2] "Noise Figure Measurement Accuracy The Y-Factor Method", Application Note 57-2. Agilent Technologies. 2004
 - [3] J. D. Gallego and M. W. Pospieszalski, "Accuracy of Noise Temperature Measurement of Cryogenic Amplifiers", Electronics Division Internal Report No. 285, NRAO, Charlottesville, VA. 1991
 - [4] B. N. Taylor and C. E. Kuyatt, "Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results", NIST Technical Note 1297. 1994 Edition.

