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ABSTRACT

Context. The radio interferometer measurement equation (RIME), especially in its 2 × 2 form, has provided a comprehensive matrix-
based formalism for describing classical radio interferometry and polarimetry, as shown in the previous three papers of this series.
However, recent practical and theoretical developments, such as phased array feeds (PAFs), aperture arrays (AAs) and wide-field
polarimetry, are exposing limitations of the formalism.
Aims. This paper aims to develop a more general formalism that can be used to both clearly define the limitations of the matrix RIME,
and to describe observational scenarios that lie outside these limitations.
Methods. Some assumptions underlying the matrix RIME are explicated and analysed in detail. To this purpose, an array correlation
matrix (ACM) formalism is explored. This proves of limited use; it is shown that matrix algebra is simply not a sufficiently flexible
tool for the job. To overcome these limitations, a more general formalism based on tensors and the Einstein notation is proposed and
explored both theoretically, and with a view to practical implementations.
Results. The tensor formalism elegantly yields generalized RIMEs describing beamforming, mutual coupling, and wide-field po-
larimetry in one equation. It is shown that under the explicated assumptions, tensor equations reduce to the 2 × 2 RIME. From a
practical point of view, some methods for implementing tensor equations in an optimal way are proposed and analysed.
Conclusions. The tensor RIME is a powerful means of describing observational scenarios not amenable to the matrix RIME. Even in
cases where the latter remains applicable, the tensor formalism can be a valuable tool for understanding the limits of such applicability.

Key words. Methods: numerical - Methods: analytical - Methods: data analysis - Techniques: interferometric - Techniques: polari-
metric

Introduction

Since its formulation by Hamaker et al. (1996), the radio inter-
ferometer measurement equation (RIME) has been adopted by
the calibration and imaging algorithm development as the math-
ematical formalism of choice when describing new methods and
techniques for processing radio interferometric data. In its 2 × 2
matrix version (also known as the Jones formalism, or JF) devel-
oped by Hamaker (2000), it has achieved remarkable simplicity
and economy of form.

Recent developments, however, have begun to expose some
limitations of the matrix RIME. In particular, phased array feeds
(PAFs) and aperture arrays (AAs), while perfectly amenable to
a JF on the systems level (in the sense that the response of a pair
of PAF or AA compound beams can be described by a 2 × 2
Jones matrix), do not seem to fit the same formalism on the ele-
ment level. In general, since a Jones matrix essentially maps two
complex electromagnetic field (EMF) amplitudes onto two feed
voltages, it cannot directly describe a system incorporating more
than two receptors per station (as in, e.g., the “tripole” design of
Bergman et al. 2003). And on the flip side of the coin, Carozzi
& Woan (2009) have shown that two complex EMF amplitudes
are insufficient – even when dealing with only two receptors
– to properly describe wide-field polarimetry, and that a three-
dimensional Wolf formalism (WF) is required. Other “awkward”
effects that don’t seem to fit into the JF include mutual coupling
of receptors.

These circumstances seem to suggest that the JF is a special
case of some more general formalism, one that is valid only un-
der certain conditions. The second part of this paper presents one
such generalized formalism. However, given the JF’s inherent el-
egance and simplicity, the degree to which is is understood in the
community, and (pragmatically but very importantly) the avail-
ability of software implementations, it will in any case continue
to be a very useful tool. It is therefore important to establish the
precise limits of applicability of the JF, which in turn can only
be done in the context of a broader theory.

The first part of this paper therefore re-examines the basic
tenets of the RIME, and highlights some underlying assumptions
that have not been made explicit previously. It then proposes a
generalized formalism based on tensors and Einstein notation.
As an illustration, some tensor RIMEs are then formulated, for
observational scenarios that are not amenable to the JF. The ten-
sor formalism is shown to reduce to the JF under the previously
established assumptions. Finally, the paper discusses some prac-
tical aspects of implementing such a formalism in software.

1. Why is the RIME 2×2?

As a starting point, I will consider the RIME formulations de-
rived in Paper I of this series (Smirnov 2011a). A few crucial
equations are reproduced here for reference. Firstly, the RIME
of a point source gives the visibility matrix measured by inter-
ferometer pq as the product of 2×2 matrices: the intrinsic source
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brightness matrix B, and the per-antenna Jones matrices J p and
Jq:

Vpq = J pBJH
q . (1)

The Jones matrix J p describes the total signal propagation
path from source to antenna p. For any specific observation and
instrument, it is commonly represented by a Jones chain of in-
dividual propagation effects:

J p = J p,n J p,n−1...J p,1, (2)

which leads to the onion form of the RIME:

Vpq = J p,n(...(J p,2(J p,1BJH
q,1)JH

q,2)...)JH
q,m (3)

The individual terms in the matrix product above correspond
to different propagation effects along the signal path. Any prac-
tical application of the RIME requires a set of matrices describ-
ing specific effects, which are then inserted into Eq. (3). These
specific matrices tend to have standard single-letter designations
(see e.g. Noordam & Smirnov 2010, Sect. 7.3). In particular,
the Kp term1 describes the geometric (and fringe stopped) phase
delay to antenna p, Kp = e−2πi(upl+vpm+wp(n−1)). The rest of the
Jones chain can be partitioned into direction-independent effects
(DIEs, or uv-plane effects) on the right, and direction-dependent
effects (DDEs, or image-plane effects) on the left, designated
as2 Gp and Ep. We can then write a RIME for multiple discrete
sources as

Vpq = Gp

∑
s

EspKspBsKH
sqEH

sq

 GH
q . (4)

Substituting the exponent for the KpKH
q term then gives us

the Fourier transform (FT) kernel in the full-sky RIME:

Vpq = Gp


"
lm

EpBEH
q e−2πi(upql+vpqm) dl dm

 GH
q , (5)

where all matrix terms3 under the integration sign are func-
tions of direction l,m.

The first fundamental assumption of the RIME is linearity4

The second assumption is that the signal is measured in a narrow
enough frequency band to be essentially monochromatic, and at
short enough timescales that J p is essentially constant; depar-
tures from these assumptions cause smearing or decoherence,
which has already been reviewed in Paper I (Smirnov 2011a,
Sect. 5.2). These assumptions are obvious and well-understood.
It is more interesting to consider why the RIME can describe in-
strumental response by a 2 × 2 Jones matrix. Any such matrix
corresponds to a linear transform of two complex number into
two complex numbers, so why two and not some other number?
This actually rests on some further assumptions.

1 Following the typographical conventions of Paper I (Smirnov
2011a, Sect. 1.4), I use normal-weight italics for Kp to emphasize the
fact that it is a scalar term rather than a full matrix.

2 Strictly speaking, Gp encompasses the DIEs up to and not including
the leftmost DDE.

3 Note that the Ep term in this equation also incorporates the w-term,
Wp = e−2πiwpqn/

√
n, which allows us to treat the integration as a two-

dimensional FT.
4 Real-life propagation effects are linear either by nature or design,

with the exception of a few troublesome regimes, e.g. when using cor-
relators with a low number of bits.

1.1. Dual receptors

In general, an EMF is described by a complex 3-vector ε.
However, an EMF propagating as a transverse plane wave can
be fully described by only two complex numbers, e = (ex, ey)T ,
corresponding to the first two components of ε in a coordinate
system where the third axis is along the direction of propagation.
At the antenna feed, the EMF is converted into two complex volt-
ages v = (va, vb)T . Given a transverse plane wave, two linearly
independent complex measurements are necessary and sufficient
to fully sample the polarization state of the signal.

In other words, a 2 × 2 RIME works because we build dual-
receptor telescopes; we do the latter because two receptors are
what’s needed to fully measure the polarization state of a trans-
verse plane wave. PAFs and AAs have more than two receptors,
but once these have been electronically combined by a beam-
former into a pair of compound beams, any such pair of beams
can be considered as a virtual receptor pair for the purposes of
the RIME.

Carozzi & Woan (2009) have pointed out that in the wide-
field case, the EMF arriving from off-axis sources is no longer
parallel to the plane of the receptors, so we can no longer mea-
sure the polarization state with the same fidelity as for the on-
axis case. In the extreme case of a source lying in the plane of
the receptors, the loss of polarization information is irrecover-
able. Consequently, proper wide-field polarimetry requires three
receptors. With only two receptors, the loss-of-fidelity effect can
be described by a Jones matrix of its own (which the authors
designate as T(xy)), but a fully three-dimensional formalism is
required to derive T(xy) itself.

1.2. The closed system assumption

When going from the basic RIME of Eq. (1) to Eq. (3), we de-
compose the total Jones matrix into a chain of propagation ef-
fects associated with the signal path from source to station p.
This is the traditional way of applying the RIME pioneered in
the original paper (Hamaker et al. 1996), and continued in subse-
quent literature describing applications of the RIME (Noordam
1996; Rau et al. 2009; Myers et al. 2010; Smirnov 2011a).

Consider an application of Eq. (3) to real life. Depending
on the application, individual components of the Jones chains
J p,i may be derived from a priori physical considerations and
models (e.g. models of the ionosphere), and/or solved for in a
closed-loop manner, such as during self-calibration. Crucially,
Eq. (3) postulates that the signal measured by interferometer pq
is fully described by the source brightness B and the set of matri-
ces J p,i and Jq, j, and does not depend on any effect in the signal
propagation path to any third antenna r. If, however, antenna r
is somehow electromagnetically coupled to p and/or q, the mea-
sured voltages vp and vq will contain a contribution received via
the signal path to r, and thus will have a non-trivial dependence
on, e.g., Jr,1 that cannot be described by the 2 × 2 formalism
alone.

To be absolutely clear, the basic RIME of Eq. (1) still holds
as long as any such coupling is linear. In other words, there
is always a single effective J p that ties the voltage vp to the
source EMF vector e. In some applications, e.g. traditional self-
cal, where we solve for this J p in a closed-loop manner, the
distinction on whether J p depends on propagation path p only,
or whether other effects are mixed in, is entirely irrelevant.
However, when constructing more complicated RIMEs (as is be-
ing done currently for simulation of new instruments, or for new
calibration techniques), an implicit assumption is made that we
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may decompose J p into per-station Jones chains, as in Eq. (3).
This is tantamount to assuming that each station forms a closed
system.

Consider the effect of electrical cross-talk, or mutual cou-
pling in a densely-packed array. If cross-talk or coupling is re-
stricted to the two receptors within a station, such a station forms
a closed system. For a closed system, the Jones chain approach
is perfectly valid. If, however, cross-talk occurs between recep-
tors associated with different stations, the receptor voltages vp
will not only depend on J p,i, but also on Jq, j, Jr,k, etc. (See
Sect. 2.1 for a more thorough discussion of this point.) With
the emergence of AA and PAF designs for new instruments, we
can no longer safely assume that two receptors form a closed
system; in fact, even traditional interferometers can suffer from
troublesome cross-talk in certain situations (Subrahmanyan &
Deshpande 2004).

Some formulations of the RIME can incorporate coupling
within each pair of stations p and q via an additional 4 × 4
matrix (see e.g. Noordam 1996) used to describe multiplicative
interferometer-based effects. By definition, this approach cannot
incorporate coupling with a third station r; any such coupling
requires additional formulations that are extrinsic to the 2 × 2
RIME, such as the ACM formalism of Sect. 2, or the tensor for-
malism that is the main subject of this paper.

The closed system assumption has not been made explicit in
the literature. This is perhaps due to the fact that the RIME is
nominally formulated for a single interferometer pq. Consider,
however, that for an interferometer array composed of N sta-
tions, the “full” RIME is actually a set of N(N − 1)/2 equa-
tions. By treating the equations independently, we’re implicitly
assuming that each equation corresponds to a closed system.
The higher-order formalisms derived below will make this issue
clear.

1.3. The colocation assumption

A final seldom explicated assumption is that each pair of recep-
tors is colocated. While not required for the general RIME for-
mulation of Eq. (1) per se, colocation becomes important (and is
quietly assumed) in specific applications for two reasons. Firstly,
it allows us to consider the geometric phase delay of both re-
ceptors to be the same, which makes the Kp matrix scalar, and
allows us to commute it around the Jones chain. Kp and KH

q can
then be commuted together to form the FT kernel, which is es-
sential for deriving the full-sky variants of the RIME such as
Eq. (5). And secondly, although the basic RIME of Eq. (1) may
be formulated for any four arbitrarily-located receptors, when
we proceed to decompose J p into per-station terms, we implic-
itly assume a single propagation path per each pair of receptors
(same atmosphere, etc.), which implies colocation. In practice
the second consideration may be negligible, but not so the first.

Classical single-feed dish designs have colocated receptors
as a matter of course, but a PAF system such as APERTIF
(van Cappellen & Bakker 2010) or ASKAP (Johnston et al.
2008) typically has horizontally and vertically oriented dipoles
at slightly different positions. The effective phase centres of the
beamformed signals may be different yet again. The Kp matrix
then becomes diagonal but not scalar, and can no longer be com-
muted around the RIME. In principle, we can shoehorn the case
of non-colocated receptors into the RIME formulations by pick-
ing a reference point (e.g., the mid-point between the two recep-
tors), and decomposing Kp into a product of a scalar phase delay
corresponding to the reference point, and a non-scalar differen-

tial delay term: Kp = K(0)
p K(δ)

p . The scalar term K(0)
p can then be

commuted around the RIME to yield the FT kernel of Eq. (5),
while K(δ)

p becomes a DIE that can be absorbed into the overall
phase calibration (or cause instrumental V or U polarization if
it isn’t). The exact form of K(δ)

p and K(0)
p can be derived from

geometric considerations (or analysis of instrument optics), but
such a derivation is extrinsic to the RIME per se. This situation
is similar to that of the T(xy) term derived by Carozzi & Woan
(2009), and is another reason behind the multidimensional for-
malism proposed later on in this paper.

Note that conventional FT-based imaging algorithms also as-
sume colocated receptors when converting visibilities to Stokes
parameters. For example, the conventional formulae for I and U,

I =
1
2

(Vxx + Vyy), U =
1
2

(Vxy + Vyx),

implicitly assume that the constituent visibilities are mea-
sured on the same baseline. Some leeway is acceptable here:
since the measured visibilities are additionally convolved by
the aperture illumination function (AIF), the formulae above
still apply, as long as the degree of non-colocation is negligi-
ble compared to the effective station size. Note also that some
of the novel approaches of expectation-maximization imaging
(Leshem & van der Veen 2000; Levanda & Leshem 2010) for-
mulate the imaging problem in such a way that the colocation
requirement can probably be done away with altogether.

2. The array correlation matrix formalism

I will first explore the limitations of the closed-system assump-
tion a little bit further. Consider an AA, PAF, or conventional
closely-packed interferometer array where mutual coupling af-
fects more than two receptors at a time. Such an array cannot
be partitioned into pairs of receptors, with each pair forming a
closed system. The normal 2 × 2 RIME of Eq. (3) is then no
longer valid. An alternative is to describe the response of such
an array in terms of a single array correlation matrix (ACM, also
called the signal voltage covariance matrix), as has been done by
Wijnholds (2010) for AAs, and Warnick et al. (2011) for PAFs.
Since the ACM provides a valuable conceptual link between the
2 × 2 RIME and the tensor formalism described later in this pa-
per, I will consider it in some detail in this section.

Let’s assume an arbitrary set of n receptors (e.g. dipoles) in
arbitrary orientation, and a single point source of radiation. If
we represent the voltage response of the full array by the column
vector v = (v1 . . . vn)T , then we can express it (assuming linearity
as usual) as the product of a n × 2 matrix with the source EMF
vector e:

v = Je =


jx1 jy1
...

...
jxn jyn


(

ex
ey

)
If all pairwise combinations of receptors are correlated, we

end up with an n × n ACM5 V:

V = 〈vvH〉 =


jx1 jy1
...

...
jxn jyn

 〈eeH〉

(
j∗x1 · · · j∗xn
j∗y1 · · · j∗yn

)
= JBJH , (6)

5 I will use boldface roman capitals, such as V, for matrices other
than 2×2. As per the conventions of Paper I (Smirnov 2011a, Sect. 1.4),
2 × 2 Jones matrices are indicated by boldface italic capitals (J ).
Brightness, coherency and visibility matrices (as well as tensors, in-
troduced later) are indicated by sans-serif capitals, e.g. B.

3



O.M. Smirnov: Revisiting the RIME. IV. A generalized tensor formalism

where B is the 2×2 source brightness matrix, and J is an n×2
Jones-like matrix for the entire array. Note that for n = 2, this
equation becomes the autocorrelation matrix given by the RIME
of Eq. (1) with p = q.

To derive the J matrix for a given observation, we need to de-
compose it into a product of “physical” terms that we can anal-
yse individually. As an example, let’s consider only three effects:
primary beam (PB) gain, geometric phase, and cross-talk. The J
matrix can then be decomposed as follows:

v = QKEe =


q11 . . . q1n

. . .
qn1 . . . qnn



κ1 0

. . .
0 κn



εx1 εy1
...

...
εxn εyn


(

ex
ey

)
(7)

and the full ME then becomes:

V = QKEBEHKHQH . (8)

The n × 2 E matrix corresponds to the PB gain, the n × n di-
agonal K matrix corresponds to the individual phase terms (dif-
ferent for every receptor), and the n × n Q matrix corresponds
to the cross-talk and/or mutual coupling between the receptors.
The equation does not include an explicit term for the complex
receiver gains: these can be described either by a separate diag-
onal matrix, or absorbed into Q.

In the case of a classical array of dishes, we have n = 2m
receptors, with each adjacent pair forming a closed system. In
this case, Q becomes block-diagonal – that is, composed of 2×2
blocks along the diagonal, equivalent to the “leakage” matrices
of the original RIME formulation (Hamaker et al. 1996). K be-
comes block-scalar (κ1 = κ2, κ3 = κ4, ...), and Eq. (8) dissolves
into the familiar set of m(m−1)/2 independent RIMEs of Eq. (3).

Note that the ordering of terms in this equation is not entirely
physical – in the actual signal path, the phase delay represented
by K occurs before the beam response E. To be even more pre-
cise, phase delay may be a combination of geometric phase that
occurs “in space” before E, and fringe stopping that occurs “in
the correlator” after Q. Such an ordering of effects becomes very
awkward to describe with this matrix formalism, but will be fully
addressed by the tensor formalism of Sect. 3.

2.1. Image-plane effects and cross-talk

If we now consider additional image-plane effects6, things get
even more awkward. In the simple case, if these effects do not
vary over the array (i.e. for a given direction, are the same along
each line of sight to each receptor), we can replace the e vec-
tor in Eq. (7) by Ze, where Z is a Jones matrix describing the
image-plane effect. We can then combine the n× 2 E matrix and
the 2 × 2 Z matrix into a single term R = EZ , which is a n × 2
matrix describing the voltage gain and all other image-plane ef-
fects, and define an n×n “apparent sky” matrix as Bapp = RBRH .
Equation (8) then becomes

V = QKBappKHQH .

If image-plane effects do vary across receptors, then a matrix
formalism is no longer sufficient! The expression for each recep-
tor p must somehow incorporate its own Zp Jones matrix. We

6 The previous papers in this series (Smirnov 2011a,b,c) also refer
to these as direction-dependent effects (DDEs). As far as the present
paper is concerned, the important aspect of these effects is that they
arise before the receptor, rather than their directional-dependence per
se. I will therefore use the alternative term image-plane effects in order
to emphasize this.

need to describe signal propagation along n lines of sight, and
each propagation effect needs a 2 × 2 matrix. A full description
of the image-plane term then needs n × 2 × 2 complex numbers.

Another way to look at this conundrum is as follows. As long
as each receptor pair is colocated and forms a closed system (as
is the case for traditional interferometers), the voltage response
of each receptor depends only on the EMF vector at its loca-
tion. The correlations between stations p and r can then be fully
described in terms of the EMF vectors at locations p and r. This
allows us to write the RIME in a matrix form, as in Eq. (3) or (8).
In the presence of significant cross-talk between more than two
receptors, the voltage response of each receptor depends on the
EMF vectors at multiple locations. In effect, the cross-talk term
Q in Eq. (8) “scrambles up” image plane effects between differ-
ent receptor locations; describing this is beyond the capability of
ordinary matrix algebra.

In practice, receptors that are sufficiently separated to see
any conceivable difference in image-plane effects would be
too far apart for any mutual coupling, while today’s all-digital
designs have also eliminated most possibilities of cross-talk.
Mathematically, this corresponds to Zp ≈ Zr where qpr , 0,
which means that image-plane effects can, in principle, be shoe-
horned into the matrix formalism of Eq. (8). This, however, does
not make the formalism any less clumsy – we still need to de-
scribe different image-plane effects for far-apart receptors, and
mutual coupling for close-together ones, and the two effects to-
gether are difficult to shoehorn into ordinary matrix multiplica-
tion.

2.2. The non-paraxial case

Carozzi & Woan (2009) have shown that the EMF can only
be accurately described by a 2-vector in the paraxial or nearly-
paraxial case. For wide-field polarimetry, we must describe the
EMF by a rank-3 column vector ε = (ex, ey, ez)T , and the sky
brightness distribution by a 3 × 3 matrix B(3) = 〈εεH〉. The in-
trinsic sky brightness is still given by a 2 × 2 matrix B; once an
xyz Cartesian system is established, this maps to B(3) via a 3 × 2
transformation matrix T (ibid., Eqs. (20) and (21)):

B(3) = TBTT .

It is straightforward to incorporate this into the ACM formal-
ism: the B term of Eqs. (8) is replaced by B(3), and the dimen-
sions of the E matrix become n × 3.

3. A tensor formalism for the RIME

The ACM formalism of the previous section turns out to be only
marginally useful for the purposes of this paper. It does aid in
understanding the effect of mutual coupling and the closed sys-
tem assumption a little bit better, but it is much too clumsy in
describing image-plane effects, principally because the rules of
matrix multiplication are too rigid to represent this particular
kind of linear transform. What we need is a more flexible scheme
for describing arbitrary multi-linear transforms, one that can go
beyond vectors and matrices. Fortunately, mathematicians have
already developed just such an apparatus in the form of tensor
algebra. In this section, I will apply this to derive a generalized
multi-dimensional RIME.
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3.1. Tensors and the Einstein notation: a primer

Tensors are a large and sprawling subject, and one not particu-
larly familiar to radio astronomers at large. Appendix A provides
a brief but formal description of the concepts required for the for-
mulations of this paper. This is intended for the in-depth reader
(and to provide rigorous mathematical underpinnings for what
follows). For an executive overview, only a few basic concepts
are sufficient:
Tensors are a generalization of vectors and matrices. An (n,m)-
type tensor is given by an (n + m)-dimensional array of numbers,
and written using n upper and m lower indices: e.g. Ti1i2...in

j1 j2... jm
.

Superscripts are indices just like subscripts, and not exponen-
tiation7! For example, a vector is typically a (1,0)-type tensor,
denoted as xi. A matrix is a (1,1)-type tensor, denoted as Ai

j.
Upper and lower tensor indices are quite distinct, in that they
determine how the components of a tensor behave under coor-
dinate transforms. Upper indices are called contravariant, since
components with an upper index (such as the components of a
vector xi) transform reciprocally to the coordinate frames. As a
simple example, consider a “new” coordinate frame whose basis
vectors are scaled up by a factor of a with respect to those of
the “old” frame. In the “new” frame, the same vector is then de-
scribed by coordinate components that are scaled by a factor of
a−1 w.r.t. the “old” components. By contrast, for a linear form f j
(that is, a linear function mapping vectors to scalars), the “new”
components are scaled by a factor of a. Lower indices are thus
said to be covariant.

In physical terms, upper indices tend to refer to vectors, and
lower indices to linear functions on vectors. An n × n matrix
can be thought of as a “vector” of n linear functions on vectors,
and thus has one upper and one lower index in tensor notation,
and transforms both co- and contravariantly. This is manifest in
the familiar T−1AT (or TAT−1, depending which way the coor-
dinate transform matrix T is defined) formula for matrix coordi-
nate transforms. For higher-ranked tensors, the general rules for
coordinate transforms are covered in Sect. A.2.1.
Einstein notation (or Einstein summation) is a convention
whereby repeated upper and lower indices in a product of ten-
sors are implicitly summed over. For example,

yi = Ai
jx

j =

N∑
j=1

Ai
jx

j

is a way to write the matrix/vector product y = Ax in
Einstein notation. The j index is a summation index since it is
repeated, and the i index is a free index. Another useful con-
vention is to use Greek letters for the summation indices. For
example, a matrix product may be written as Ci

j = Ai
αBα

j .
The tensor conjugate is a generalization of the Hermitian trans-
pose. This is indicated by a bar over the symbol and a swapping
of the upper and lower indices. For example, x̄i is the conjugate
of xi, and Āi

j is the conjugate of A j
i .

3.2. Recasting the RIME in tensor notation

As an exercise, let’s recast the basic RIME of Eq. (1) using ten-
sor notation. This essentially repeats the derivations of Paper I
(Smirnov 2011a) using tensor terminology (compare to Sect. 1
therein).

7 This is the way they will be used in this paper from this point on,
with the exception of small integer powers (e.g. l2), where exponentia-
tion is obviously implied.

For starters, we must define the underlying vector space. The
classical Jones formalism (JF) corresponds to rank-2 vectors, i.e.
the C2 space. We can also use C3 space instead, which results in
a version of the Wolf formalism (WF) suggested by Carozzi &
Woan (2009). Remarkably, both formulations look exactly the
same in tensor notation, the only difference being the implicit
range of the tensor indices. I’ll stick to the familiar terminology
of the JF here, but the same analysis applies to the WF.

An EMF vector is then just a (1,0)-type tensor ei. Linear
transforms of vectors (i.e. Jones matrices) correspond to (1,1)-
type tensors, [Jp]i

j (note that p is not, as yet, a tensor index here,
but simply a station “label”, which is emphasized by hiding it
within brackets). The voltage response of station p is then

[vp]i = [Jp]i
αeα,

where α is a summation index. The coherency of two voltage
or EMF vectors is defined via the outer product8 eiē j, yielding a
(1,1)-type tensor, i.e. a matrix:

[Vpq]i
j = 2〈[vp]i[v̄q] j〉,

Combining the two equations above gives us

[Vpq]i
j = 2

〈[
[Jp]i

αeα
] [

[Jq] j
βe
β
]∗〉

= [Jp]i
α(2〈eαēβ〉)[J̄q]βj

And now, defining the source brightness tensor Bi
j as 2〈eiē j〉,

we arrive at

[Vpq]i
j = [Jp]i

αBα
β [J̄q]βj , (9)

which is exactly the RIME of Eq. (1), rewritten using
Einstein notation. Not surprisingly, it looks somewhat more
bulky than the original – matrix multiplication, after all, is a
more compact notation for this particular operation.

Now, since we can commute the terms in an Einstein sum
(as long as they take their indices with them, see Sect. A.5.2),
we can split off the two J terms into a sub-product which we’ll
designate as [Jpq]:

[Jp]i
αBα

β [J̄q]βj =
(
[Jp]i

α[J̄q]βj
)
Bα
β = [Jpq]iβ

jαBα
β . (10)

What is this Jpq? It is a (2,2)-type tensor, corresponding to 2×
2×2×2 = 16 numbers. Mathematically, it is the exact equivalent
of the outer product J p ⊗ JH

q , giving us the 4 × 4 form of the
RIME, as originally formulated by Hamaker et al. (1996). The
components of the tensor given by [Jpq]iβ

jαBα
β correspond exactly

to the components of a 4-vector produced via multiplication of
the 4×4 matrix J p⊗ JH

q by the 4-vector SI (see Paper I, Smirnov
2011a, Sect. 6.1).

Finally, note that we’ve been “hiding” the p and q station
labels inside square brackets, since they don’t take part in any
tensor operations above. Upon further consideration, this distinc-
tion proves to be somewhat artificial. Let’s treat p and q as free
tensor indices in their own right9. The set of all Jones matrices
for the array can then be represented by a (2,1)-type tensor Jpi

j .

All the visibilities measured by the array as a whole will then be

8 This definition is actually fraught with subtleties: see Sect. A.6.1
for a discussion.

9 Strictly speaking, all tensor indices should have the same range.
I’m implicitly invoking mixed-dimension tensors at this point. See
Sect. A.6.2 for a formal treatment of this issue.
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represented by a (2,2)-type tensor Vpi
q j, and we can then rewrite

Eq. (9) as

Vpi
q j = Jpi

α Bα
β J̄βq j, (11)

...which is now a single equation for all the visibilities mea-
sured by the array, en masse (as opposed to the visibility of a
single baseline given by Eq. (1) or (9)). Such manipulation of
tensor indices may seem like a purely formal trick, but will in
fact prove very useful when we consider generalized RIMEs be-
low.

Note that the brightness tensor B is self-conjugate (or
Hermitian), in the sense that Bi

j = B̄ j
i . The visibility tensor V,

on the other hand, is only Hermitian with respect to a permuta-

tion of p and q: Vpi
q j = Vqi

p j.

4. Generalizing the RIME

In this section, I will put tensor notation to work to incorporate
image-plane effects and mutual coupling and beamforming into
a generalized RIME hinted at in Sect. 2. This shows how the for-
malism may be used to derive a few different forms of the RIME
for various instrumental scenarios. Note that the resulting equa-
tions are somewhat speculative, and not necessarily applicable to
any particular real-life instrument. The point of the exercise is to
demonstrate the flexibility of the formalism in deriving RIMEs
that go beyond the capability of the Jones formalism.

First, let’s set up some indexing conventions. I’ll use i, j, k, ...
for free indices that run from 1 to N = 2 (or 3, see below), i.e.
for those that refer to EMF components, or voltages on paired re-
ceptors, and α, β, γ, ... for summation indices in the same range. I
shall refer to such indices as 2-indices (or 3-indices). For free in-
dices that refer to stations or disparate receptors (and run from 1
to N), I’ll use p, q, r, s, ..., and for the corresponding summation
indices, σ, τ, υ, φ, ... I shall refer to these as station indices.

Consider again the N arbitrary receptors of Sect. 2 observ-
ing a single source. The source EMF is given by the tensor ei.
All effects between the source and the receptor, up to and not
including the voltage gain, can be described by a (2,1)-type ten-
sor, Zpi

j . This implies that they are different for each receptor p.
The PB response of the receptor can be described by a (1,1)-type
tensor, Ep

i . Finally, the geometric phase delay of each receptor is
a (1,0)-type tensor, Kp.

Let’s take this in small steps. The EMF field arriving at each
receptor p is given by

e′pi = KpZpi
α eα (12)

(remembering that we implicitly sum over α here). If we con-
sider just one receptor in isolation, we can re-write the equation
for one specific value of p. This corresponds to the familiar ma-
trix/vector product:

e′i = KZi
αeα, or e′ = KZe,

where Z is the Jones matrix describing the image-plane ef-
fect for this particular receptor, and K is the geometric phase
delay. The receptor translates the EMF vector e′i into a scalar
voltage v′. This is done via its PB response tensor, Ei, which is
just a row vector:

v′ = Eβe′β.

Now, if we put the receptor index p back in the equations,
we arrive at the tensor expression:

v′p = Ep
βKpZpβ

α eα (13)

We’re now summing over α when applying image-plane ef-
fects, and over β when applying the PB response.

Finally, cross-talk and/or mutual coupling scrambles the re-
ceptor voltages. If v′p is the “ideal” voltage vector without cross-
talk, then we need to multiply it by an n × n matrix (i.e. a (1,1)-
type tensor) to apply cross-talk:

vp = Qp
σv′σ. (14)

The final equation for the voltage response of the array is
then:

vp = Qp
σEσ

βKσZσβα eα. (15)

We’re now summing over σ (which ranges over all recep-
tors), α and β.

The visibility tensor Vp
q , containing all the pairwise correla-

tions between the receptors, can then be computed as 2〈vpv̄q〉.
Applying Eq. (15), this becomes

Vp
q = 2

〈[
Qp
σEσ

βKσZσβα eα
] [

Qq
τE

τ
γK

τZτγδ eδ
]∗〉

This uses a different set of summation indices within each
pair of brackets, since each sum is computed independently.
Doing the conjugation and rearranging the terms around, we ar-
rive at:

Vp
q = Qp

σEσ
βKσZσβα Bα

δ Z̄δτγK̄τĒ
γ
τQ̄

τ
q. (16)

This is the tensor form of a RIME for our hypothetical ar-
ray. Note that structurally it is quite similar to the ACM form of
Sect. 2 (e.g. Eq. (8)), but with one principal difference: the (2-
1)-type Z tensor describes receptor-specific effects, which can-
not be expressed via a matrix multiplication. Note also that the
other awkwardness encountered in Sect. 2, namely the difficulty
of putting geometric phase delay and fringe stopping into their
proper places in the equation, is also elegantly addressed by the
tensor formalism. Additional phase delays tensors can be in-
serted at any point of the equation.

4.1. Wolf vs. Jones formalisms

Equation (16) generalizes both the classical Jones formalism
(JF), and the three-component Wolf formalism (WF). The JF
is constructed on top of a two-dimensional vector space: EMF
vectors have two components, the indices α, β, ... range from 1
to 2, and the B tensor is the usual 2 × 2 brightness matrix. The
WF corresponds to a three-dimensional vector space, with the B
tensor becoming a 3 × 3 matrix.

Recall (Sect. 2.2) that the 3 × 3 brightness matrix is derived
from the 2×2 brightness matrix via a 3×2 transformation matrix
T. This derivation can also be expressed as an Einstein sum:

[B(3)]i
j = Ti

α[B(2)]αβTβj ,

where T is the tensor equivalent of the transformation matrix.
In subsequent formulations, I will make no distinction be-

tween the JF and the WF unless necessary, with the implicit un-
derstanding that the appropriate indices range from 1 to 2 or 3,
depending on which version of the formalism is needed.
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4.2. Decomposing the J matrix

If we isolate the left-hand sub-product in Eq. (16),

Qp
σEσ

βKσZσβα ,

and track down the free indices in this tensor expression – p
and α – we can see that the product is a (1,1) tensor, Jp

α. We can
then rewrite the equation in a more compact form:

Vp
q = Jp

αBα
β J̄βq (17)

Not surprisingly, this is just the ACM RIME of Eq. (6)
rewritten in Einstein notation. In hindsight, this shows how we
can break down the full-array response matrix J into a tensor
product of physically meaningful terms. Note how this parallels
the situation of the 2×2 form RIME: even though each 2×2 vis-
ibility matrix, in principle, depends on only two Jones matrices
(Eq. (1)), in real-life applications we almost always need to form
them up from a chain of several different Jones terms, as in e.g.
the onion form (Eq. (3)). What the tensor formulation offers is
simply a more capable means of computing the response matri-
ces (more capable than a matrix product, that is) from individual
propagation tensors.

4.3. Characterizing propagation tensors

Since it the original formulation of the matrix RIME, a number
of standard types of Jones matrices have seen widespread use.
The construction of Jones matrices actually follows fairly simple
rules (even if their behaviour as a function of time, frequency and
direction may be quite complicated). A number of similar rules
may be proposed for propagation tensors:

– A tensor that translates the EMF vector into another vector
(e.g., Faraday rotation) must necessarily have an upper and a
lower 2-index.

– A tensor that translates both components of the EMF field
equally (i.e. a scalar operation such as phase delay) does not
need any -indices at all.

– A tensor transforming the EMF vector into a scalar (e.g., the
voltage response of a receptor) must have a lower 2-index.

– A tensor for an effect that is different across receptors must
have a station index.

– A tensor for an effect that maps per-receptor quantities onto
per-receptor quantities must have two station indices (upper
and lower).

Some examples of applying these rules:

– Faraday rotation translates vectors, so it must have an upper
and a lower 2-index. If different across stations and/or recep-
tors, it must also have a station index. This suggests that the
tensor looks like Fpi

j (or Fi
p j).

– Phase delay operates on the EMF vector as a scalar. It is
different across receptors, hence its tensor looks like Kp.

– PB response translates the EMF vector into a scalar voltage,
and must therefore have one lower 2-index. It is usually dif-
ferent across stations and/or receptors, hence its tensor looks
like Ep

i .
– Cross-talk or mutual coupling translates receptor voltages

into receptor voltages, so it needs two station indices. Its ten-
sor looks like Qp

q .

– If mutual coupling needs to be expressed in terms of the
EMF field at each receptor instead, then it may need two
2-indices and two station indices, giving a (2,2)-type tensor,
Qpi

q j. Alternatively, this may be combined with the PB re-
sponse tensor E, giving the voltage response of each recep-
tor as a function of the EMF vector at all the other receptors.
This would be a (2,1)-tensor, Epi

j .

4.4. Describing mutual coupling

Equations (15) and (16) were derived under the perhaps simplis-
tic assumption that the effect10 of mutual coupling can be fully
described via cross-talk between the receptor voltages. That is,
the collection of EMF vectors at receptor’s location was de-
scribed by a (2,0)-type tensor, epi (Eq. (12)), then converted into
nominal receptor voltages by the PB tensor Ep

i (Eq. (13)), and
then converted into actual voltages via a (1,1)-type cross-talk
tensor Qp

q (Eq. (14)).
The underlying assumption here is that each receptor’s actual

voltage can be derived from the nominal voltages alone. To see
why this may be simplistic, consider a hypothetical array of of
n identical dipoles in the same orientation, parallel to the x axis.
Nominally, the dipoles are then only sensitive to the x compo-
nent of the EMF, which, in terms of the PB tensor E, means that
Ep

2 ≡ 0 for all p. Consequently, the actual voltages vp given by
this model will only depend on the x component of the EMF. If
mutual coupling causes any dipole to be sensitive to the y com-
ponent of the EMF seen at another dipole, this results in a con-
tamination of the measured signal that cannot be described by
this voltage-only cross-talk model.

A more general approach is to describe the voltage response
of each receptor as a function of the EMF at all the receptor lo-
cations, rather than the nominal receptor voltages. This requires
a (1,2)-type tensor:

vp = Ep
σβe
′σβ.

This Ep
i j tensor (consisting of n×n×2 complex numbers) then

describes the PB response and the mutual coupling together. The
simpler cross-talk-only model corresponds to Ep

q j being decom-
posable into a product of two (1,1)-type tensors (n × n + n × 2
complex numbers), as Ep

q j = Qp
qEp

j . This model will perhaps
prove to be sufficient in real-life applications, but it is illustrative
how simple it is to extend the formalism to the more complex
case.

4.5. Describing beamforming

In modern PAF and AA designs, receptors are grouped into sta-
tions, and operated in beamformed mode – that is, groups of re-
ceptor voltages are added up with complex weights to form one
or more compound beams. The output of a station is then a sin-
gle complex voltage (strictly speaking, a single complex num-
ber, since beamforming is usually done after A/D conversion)
per each compound beam, rather than n individual receptor volt-
ages.

Beamforming may also be described in terms of the ten-
sor RIME. Let’s assume N stations, each being an array of
n1, n2, ..., nN receptors. The voltage vector va registered at station
p (where a = 1...np) can be described by Eq. (15). In addition,

10 As opposed to the mechanism, which is considerably more com-
plex, and outside the scope of this work.
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the voltages are subject to per-receptor complex gains (which
we had quietly ignored up until now), which corresponds to an-
other term, ga. The output of one beamformer, f , is computed by
multiplying this by a covector of weights, wa:

f = wava = wagaQa
σEσ

βKσZσβα eα. (18)

In a typical application, the beamformer outputs are corre-
lated across stations. In this context, it is useful to derive a com-
pound beam tensor, which would allow us to treat a whole station
as a single receptor. To do this, we must assume that image plane
effects are the same for all receptors in a station (Zσβα ≡ Zβα).
Furthermore, we need to decompose the phase term Kσ into a
common “station phase” K, and a per-receptor differential de-
lay (δK)σ, so that Kσ = K(δK)σ. The latter can be derived in a
straightforward way from the station (or dish) geometry. We can
then collapse some summation indices:

f = wagaQa
σEσ

βK(δK)σZβαeα = (wagaQa
σEσ

β (δK)σ)KZβαeα

= SβKZβαeα. (19)

This expression is quite similar to Eq. (15). Now, if for sta-
tion p the compound beam tensor is given by Sp

β , then a complete
RIME for an interferometer composed of beamformed stations
is:

Vp
q = Sp

βKpZaβ
α Bα

δ Z̄δqγK̄qS̄γ
q, (20)

which is very similar to the RIME of Eq. (16), except that
the PB tensor E has been replaced by the station beam tensor S,
and there’s no cross-talk between stations. If each station pro-
duces a pair of compound beams (e.g., for the same pointing but
sensitive to different polarizations), then this equation reduces to
the classical matrix RIME, where the E-Jones term is given by
a tensor product. In principle, we could also combine Eqs. (18)
and (20) into one long equation describing both beamforming
and station-to-station correlation.

This shows that a compound beam tensor (Sp
i ) can always

be derived from the beamformer weights, receptor gains, mu-
tual coupling terms, element PBs, and station geometry, under
the assumption that image-plane effects are the same across the
aperture of the station. By itself this fact is not particularly new
or surprising, but its useful to see how the tensor formalism al-
lows it to be formulated as an integral part of the RIME.

As for the image-plane effects assumption, it is probably safe
for PAFs and small AAs, but perhaps not so for large AAs. If
the assumption does not hold, we’re left with an extra σ index
in Eq. (19), and may no longer factor out an independent com-
pound beam tensor Sp

i . This situation cannot be described by the
Jones formalism at all, but is easily accommodated by the tensor
RIME.

4.6. A classical dual-pol RIME

Equation (16) describes all correlations in an interferometer in a
single (1,1)-type tensor (matrix). Contrast this to Eq. (11), which
does the same via a (2,2)-type tensor, by grouping pairs of re-
ceptors per station. Since the latter is a more familiar form in
radio interferometry, it may be helpful to recast Eq. (16) in the
same manner. First, we mechanically replace each receptor index
(p, q, σ, τ) by pairs of indices (pi, q j, συ, τφ), corresponding to
a station and a receptor within the station:

Vpi
q j = Qpi

συE
συ
β KσυZσυβα Bα

δ Z̄δτφγK̄τφĒ
γ
τφQ̄

τφ
q j .

Next, we assume colocation (since the per-station receptors
are, presumably, colocated) and simplify some tensors. In par-
ticular, K and Z can lose their receptor indices:

Vpi
q j = Qpi

συE
συ
β KσZσβα Bα

δ Z̄δτγK̄τĒ
γ
τφQ̄

τφ
q j .

This equation cannot as yet be expressed via the Jones for-
malism, since for any p, q, the sum on the right-hand side con-
tains terms for other stations (σ, τ). To get to a Jones-equivalent
formalism, we need to remember the closed system assumption,
i.e. no cross-talk or mutual coupling between stations (Sect. 1.2).
This corresponds to Qpi

q j ≡ 0 for p , q. Q is then equivalent to a
tensor of one rank lower, with one station index eliminated:

Vpi
q j = Qpi

υ Epυ
β KpZpβ

α Bα
δ Z̄δqγK̄qĒγ

qφQ̄
φ
q j. (21)

For any p, q, this is now exactly equivalent to a Jones-
formalism RIME of the form:

Vpq = QpEpKpZpBZH
q KH

q EH
p QH

q ,

where Kp is a scalar, and the rest are full 2 × 2 matrices. The Qp
term here incorporates the traditional G-Jones (receiver gains)
and D-Jones (polarization leakage). Finally, if we assume no
polarization leakage (i.e. no cross-talk between receptors), then
Qpi

j ≡ 0 for i , j, and we can lose another index:

Vpi
q j = QpiEpi

β KpZpβ
α Bα

δ Z̄δqγK̄qĒγ
q jQ̄q j. (22)

In the Jones formalism, this is equivalent to Qp being a diag-
onal matrix for any given p.

4.7. A full-sky tensor RIME

By analogy with the matrix RIME (see Paper I, Smirnov 2011a,
Sect. 3), we can extend the tensor formalism to the full-sky case.
This does not lead to any new insights at present, but is given
here for the sake of completeness.

When observing a real sky, each receptor is exposed to the
superposition of the EMFs arriving from all possible directions.
Let’s begin with Eq. (16), and assume the Q term is a DIE, and
the rest are DDEs. For a full-sky RIME, we need to integrate the
equation over all directions as

Vp
q = Qp

σ


∫
4π

Eσ
βKσZσβα Bα

δ Z̄δτγK̄τĒ
γ
τ dΩ

 Q̄τ
q,

which, projected into lm coordinates, gives us:

Vp
q = Qp

σ


"
lm

Eσ
βKσZσβα Bα

δ Z̄δτγK̄τĒ
γ
τ

dl dm
n

 Q̄τ
q, (23)

Let’s isolate a few tensor sub-products and collapse indices.
First, we can introduce an “apparent sky” tensor:

B̂p
q = Ep

βZpβ
α Bα

δ Z̄δqγĒ
γ
q

Note that this is an n × n matrix. Physically, Bp
q (l,m) corre-

sponds to the coherency “seen” by receptors p and q as a func-
tion of direction. Next, we introduce a phase tensor:

Kp
q = KpK̄q,

8
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which another n × n matrix. Note that we reuse the letter K
here, but there shouldn’t be any confusion with with the “other”
Kp, since the tensor type is different. Each component of this
tensor is given by

Kp
q = exp

[
−2πi(upql + vpqm + wpq(n − 1))

]
.

Equation (23) then becomes simply:

V p
q = Qp

σ


"
lm

Bστ Kσ
τ

dm dm
n

 Q̄τ
q, (24)

where the integral then corresponds to n × n element-by-
element Fourier transforms, and all the DDE-related discussions
of Papers I (Smirnov 2011a, Sect. 3) and II (Smirnov 2011b,
Sect. 2) apply.

4.7.1. The apparent coherency tensor

If we designate the value of the integral in Eq. (23) by the appar-
ent coherency tensor Xσ

τ , we have arrive at the simple equation

Vp
q = Qp

σXσ
τ Q̄τ

q.

which ties together the observed correlation matrix, Vp
q , and

the apparent coherency tensor Xσ
τ . The physical meaning of each

element of Xσ
τ is, obviously, the apparent coherency observed by

receptor pair σ and τ. The cross-talk term Q “scrambles up” the
apparent coherencies among all receptors. Note that this similar
to the coherency matrix X (or Xpq) used in the classical formula-
tion of the matrix RIME (Hamaker et al. 1996; Smirnov 2011a,
Sect. 1.7).

4.8. Coordinate transforms, or whither tensors?

Einstein summation by itself is a powerful notational conve-
nience for expressing linear combinations of multidimensional
arrays, one that can be gainfully employed without regard to the
finer details of tensors. The formulations of this paper may in
fact be read in just such a manner, especially as they do not seem
to make explicit use of that many tensor-specific constructs. It is
then a fair question whether we need to invoke the deeper con-
cepts of tensor algebra at all.

There is one tensor property, however, that is crucial within
the context of the RIME, and that is behaviour under coordinate
transforms. In the formulations above, I did not specify a coor-
dinate system. As in the case of the matrix RIME, the equations
hold under change of coordinate frame, but their components
must be transformed following certain rules. The general rules
for tensors are given in Sect. A.4 (Eq. (A.1)); for the mixed-
dimension tensors employed in this paper, coordinate transforms
only affect the core C2 (or C3) vector space, and do not ap-
ply to station indices (the latter are said to be invariant, see
Sect. A.6.2).

As long as we know that something is a tensor of a certain
type, we have a clear rule for coordinate transformations given
by Eq. (A.1). However, Einstein notation can be employed to
form up arbitrary expressions, which are not necessarily proper
tensors unless the rigorous rules of tensor algebra are followed
(see Appendix A). This argues against a merely mechanical use
of Einstein summation, and makes it worthwhile to maintain the
mathematical rigour that enables us to clearly follow whether
something is a tensor or not.

5. Implementation aspects

Superficially, evaluation of Einstein sums seems straightforward
to implement in software, since it is just a series of nested loops.
Upon closer examination, it turns out to raise some non-trivial
performance and optimization issues, which I’ll look at in this
section.

5.1. A general formula for FLOP counts

Consider an Einstein sum that is a product of k tensors (over a D-
dimensional vector space), with n free and m summation indices.
I’ll call this an (n,m, k)-calibre product. Let’s count the number
of floating-point operations (ops for short) required to compute
the result. The resulting tensor has Dn components. Each compo-
nent is a sum of Dm individual products (thus Dm − 1 additions);
each product incurs k − 1 multiplications. The total op count is
thus

N(D)
ops (n,m, k) = Dn((Dm(k − 1) + Dm − 1)) = Dn(Dmk − 1). (25)

For mixed-dimensionality tensors, a similar formula may be
derived by replacing Dn and Dm with Dn1

1 Dn2
2 and Dm1

1 Dm2
2 , where

the two dimensions are D1 and D2, and the index counts per each
dimensionality are numbered accordingly.

Consider a few familiar examples:

– Multiplication of 2 × 2 matrices, Ai
αBα

j : N(2)
ops(2, 1, 2) = 12.

– Multiplication of 4 × 4 matrices: N(4)
ops(2, 1, 2) = 112.

– Outer product of 2 × 2 matrices, Ai
jB

k
l : N(2)

ops(4, 0, 2) = 16.
– Multiplication of a 4 × 4 matrix by a 4-vector, Ai

αxα:
N(4)

ops(1, 1, 2) = 28.
– The equivalent operation (see Eq. (10)) of multiplying

a (2,2)-type tensor (with D = 2) by a matrix, Jiβ
jαBα

β :

N(2)
ops(2, 2, 2) = 28.

5.2. Partitioning an Einstein sum

Mathematically equivalent formulations can often incur sig-
nificantly different numbers of ops. For example, in Paper I
(Smirnov 2011a, Sect. 6.1), I already noted that a straightfor-
ward implementation of a 2 × 2 RIME is cheaper than the same
equation in 4 × 4 form, although the specific op counts given
therein are in error11.

Let’s consider a 2 × 2 RIME of the form of Eq. (3), with
two sets of Jones terms, which we’ll designate as D and E. We
then have the following fully-equivalent formulations in 2 × 2
and 4 × 4 form:

Vpq = DpEpBEH
q DH

q , (26)

vpq = (Dp ⊗ DH
q )(Ep ⊗ EH

q )SI. (27)

while in tensor notation the same equation can be formulated
as

[Vpq]i
j = [Dp]i

α2
[Ep]α2

α1
Bα1
β1

[Ēq]β1
β2

[D̄q]β2
j . (28)

11 Specifically, Paper I claims 128 ops per Jones term in the 4 × 4 for-
malism: 112 to multiply two 4×4 matrices, and another 16 for the outer
product. These numbers are correct per se. However, a 4×4 RIME may
in fact be evaluated in a more economical order, namely as a series of
multiplications of a 4-vector by a 4×4 matrix. As seen above, this costs
28 ops per each matrix-vector product, plus 16 for the outer product, for
a total of only 44 ops per Jones term.
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The cost of this Einstein sum is N(2)
ops(2, 4, 5) = 316 ops. In

comparison, the 2 × 2 form incurs 4 matrix products, for a total
of only 48 ops, while the 4 × 4 form incurs12 two outer products
and two 4×4 matrix/vector products, for a total of 88. For longer
expressions with more Jones terms (i.e. larger m), brute-force
Einstein summation does progressively worse.

It is easy to see the source of this inefficiency. In the inner-
most loop (say, over j), only the rightmost term [D̄q]β2

j is chang-
ing, so it is wasteful to repeatedly take the product of the other
four terms at each iteration. We can trim some of this waste by
computing things in a slightly more elaborate order. Let’s split
up the computation as(
[Dp]i

α2
[Ep]α2

α1
Bα1
β1

[Ēq]β1
β2

)︸                         ︷︷                         ︸
≡Ai

β2

[D̄q]β2
j , (29)

and compute Ai
β2

first (costing N(2)
ops(2, 3, 4) = 124 ops), fol-

lowed by Ai
β2

[D̄q]β2
j (costing N(2)

ops(2, 1, 2) = 12 ops). This is an
improvement, but we don’t have to stop here: a similar split can
be applied to Ai

β2
in turn, and so on, ultimately yielding the fol-

lowing sequence of operations:(((
[Dp]i

α3
[Ep]α3

α2

)
Bα1
β1

)
[Ēq]β2

β3

)
[D̄q]β3

j ) (30)

But this is just a sequence of 2×2 matrix products, i.e. exactly
the same computations that occur in the 2 × 2 formulation! And
on the other hand, as already intimated by Eq. (10), the 4×4 form
is equivalent to a different partitioning of the same expression,
namely(
[Dp]i

α3
[D̄q]β3

j

) ((
[Ep]α3

α2
[Ēq]β2

β3

)
Bα1
β1

)
.) (31)

The crucial insight here is that different partitionings of the
computation in Eq. (28) incur different numbers of ops.

Let’s look at what happens to the calibres during partition-
ing. Consider a partition of an (n,m, k)-calibre product into two
steps. The first step computes an (n′,m′, k′)-calibre sub-product
(for example, in Eq. (29), the initial calibre is (2, 4, 5), and the
sub-product for Ai

β2
has calibre (2, 3, 4)). At the second step, the

result of this is multiplied with the remaining terms, resulting in
an expression of calibre (n,m − m′, k − k′ + 1) (in Eq. (29), this
is Ai

β2
D̄β2

j , with a calibre of (2, 1, 2)). The calibres are strictly re-
lated: each of the k terms goes to either one sub-product or the
other, but we incur one extra term (A) in the partitioning, hence
we have k − k′ + 1 terms at the second step. The summation in-
dices are also partitioned between the steps, hence m−m′ are left
for the second step. As for the free indices, their number n′ may
actually temporarily increase (as in the case of Eq. (31), where
sub-products have the calibre (4,0,2)). It is straightforward to
show that if it does not increase, then

N(D)
ops (n,m′, k′) + N(D)

ops (n,m − m′, k − k′ + 1) < N(D)
ops (n,m, k),

so as long as n′ ≤ n, partitioning always reduces the total number
of ops. In essence, this happens because in the total op counts, a
product is replaced by a sum: Dm′ + Dm−m′ < Dm.

From this it follows that the 2 × 2 form of the RIME is,
in a sense, optimal. The partitioning given by Eq. (30) re-
duces an N(D)

ops (2,m, k) operation into m operations of N(D)
ops (2, 1, 2)

12 Not counting the SI operation: we assume the coherency vector is
a given, since it’s the equivalent of B.

each; the latter represents the smallest possible non-trivial sub-
product. (Note that the rank of any sub-product of Eq. (28) can
only be an even number, since all the terms have an even rank.
The minimum non-trivial n′ is therefore 2.)

5.3. Dependence optimization

The partitioning given by Eq. (30) allows for a few alternatives,
corresponding to different order of matrix multiplication. While
seemingly equivalent, they may in fact represent a huge oppor-
tunity for optimization, when we consider that in real life, the
equation needs to be evaluated millions to billions of times, for
all antenna pairs, baselines, time and frequency bins. Not all the
terms in the equation have the same time and frequency depen-
dence: some may be constant, some may be functions of time
only or frequency only, some may change a lot slower than oth-
ers – in other words, some may have limited dependence. For
example, in the “onion” of Eq. (26), if B and Ep have a limited
dependence, say on frequency only, then the inner part of the
“onion” can be evaluated in a loop over frequency channels, but
not over timeslots. The resulting savings in ops can be enormous.

This was already demonstrated in the MeqTrees system
(Noordam & Smirnov 2010), which takes advantage of limited
dependence on-the-fly. A RIME like Eq. (26) is represented by
a tree, which typically corresponds to the following order of op-
erations:

Vpq = Dp(EpBEH
q )DH

q ,

with an outermost loop being over the layers of the “onion”,
and inner loops over times and frequencies. When the operands
have limited dependence (as e.g. for the EpBEH

q product), the
MeqTrees computational engine automatically skips unneces-
sary inner loops. Thus the amount of loops is minimized on the
“inside” of the equation, and grows as we move “out” through
the layers and add terms with more dependence. I call this de-
pendence optimization.

Among the alternative partitionings of Eq. (30), the one that
computes the sub-products with the least dependence first can
benefit from dependence optimization the most.

5.4. Commutation optimization

In a 2 × 2 matrix RIME, dependence optimization works best
if the terms with the least dependence are placed on the inside
of the equation – if limited dependence happens to apply to Dp
(on the outside) and not Ep (on the inside), dependence opti-
mization can’t reduce any inner loops at all. Unfortunately, one
cannot simply change the order of the matrices willy-nilly, since
they don’t generally commute. However, when dealing with spe-
cific kinds of matrices that do commute, we can do some op-
timization by shuffling them around. Real-life RIMEs tend to
be full of matrices with limited commutation properties, such
as scalar, diagonal and rotation matrices (see Paper I, Smirnov
2011a, Sect. 1.6).

In tensor notation, Ai
αBα

j commute if the summation indices
can be swapped around: Ai

αBα
j = Aα

j B
i
α. Some of the commuta-

tion rules of 2 × 2 matrices discussed in Paper I (ibid.) do map
to tensor form easily. For example, a diagonal matrix is a tensor
with the property Ai

j = 0 for i , j. If A and B are both diagonal,
then Ai

αBα
j is only non-zero for i = j, and commutation is ob-

vious. Other commutation rules are more opaque: rotation ma-
trices are known to commute among themselves, but this does

10
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not follow from tensor notation at all. Therefore, opportunities
for commutation optimization of a tensor expression may not be
detectable until we recast it into matrix form.

5.5. Towards automatic optimization

For the more complicated expressions of e.g. Eq. (16) or (20),
different partitionings may prove to be optimal. The previous
sections show how to do such analysis formally. In fact, one
could conceive of an algorithm that, given a a tensor expression
in Einstein form, searches for an optimal partitioning automati-
cally (with dependences taken into account).

It is also possible that alternative partitionings may prove to
be more or less amenable to parallelization and/or implementa-
tion on GPUs. The tensor formalism may prove to be a valuable
tool in this area. Recasting a series of tensor operations (matrix
products, etc.) as a single Einstein sum, such as that in Eq. (28),
shows the computation in its “flattest” (if relatively inefficient)
form, which can then be repartitioned to yield equivalent but
more efficient formulations.

6. Conclusions

The 2 × 2 matrix RIME, having proven itself as a very capa-
ble tool for describing classical radio interferometry, is showing
its limitations when confronted with PAFs, AAs, and wide-field
polarimetry. This is due to a number of implicit assumptions un-
derlying the formalism (plane-polarized, dual, colocated recep-
tors, closed systems) that have been explicated in this paper. The
RIME may be rewritten in an array correlation matrix form that
makes these assumptions clearer, but this struggles to combine
image-plane effects and mutual coupling in the same equation.

A more general formalism based on tensors and Einstein no-
tation is proposed. This reduces to the 2× 2 (and 4× 4) forms of
the RIME under the explicated assumptions. The tensor formal-
ism can be used to step outside the bounds of these assumptions,
and can accommodate regimes not readily described in 2 × 2
matrix form. Some examples of the latter are:

Coupling between closely-packed stations cannot be described
in the basic 2 × 2 form (where a Jones chain correspond-
ing to each signal path is used) without additional extrinsic
complexity, such as combining the 2×2 equations into some
kind of larger equation. The tensor formalism describes this
regime with a single equation.

Beamforming can only be accommodated in the 2 × 2 form by
using separate equations to derive the effective Jones matrix
of a beamformer. The tensor formalism combines beamform-
ing and correlation into the same equation.

The Wolf formalism proposed by Carozzi & Woan (2009) uses
3 × 3 matrices to describe polarimetry in the wide-field
regime. Again, this can only be mapped to the 2 × 2 form
by using external equations to derive special Jones matrices.
A tensor formalism naturally incorporates the 3-component
description, and can be used to combine it with the regimes
above.

In practice, tensor equations may be implemented via alter-
native formulations that are mathematically equivalent, but have
significantly different computing costs (the 2×2 vs. 4×4 RIMEs
being but one example). Computing costs may be optimized by a
repartitioning of the calculations, and some formal methods for
analysing this have been proposed in this paper.

I do not propose to completely supplant the 2 × 2 RIME.
Where applicable (that is, for the majority of current radio inter-
ferometric observations), the latter ought to remain the formal-
ism of choice, both for its conceptual simplicity, and its compu-
tational efficiency. Even in these cases, the tensor formalism can
be of value as both a rigorous theoretical tool for analysing the
limits of the Jones formalism’s applicability, and a practical tool
for deriving certain specialized Jones matrices.

Acknowledgements. This effort/activity is supported by the European
Community Framework Programme 7, Advanced Radio Astronomy in Europe,
grant agreement no.: 227290.

Appendix A: Elements of tensor algebra

This appendix gives a primer on elements of tensor theory rel-
evant to the present paper. Most of this is just a summary of
existing mathematical theory; the only new results are presented
in Sect. A.6, where I formally map the RIME into tensor alge-
bra. More details on tensor theory can be found in any number
of textbooks, for example Synge & Schild (1978) and Simmonds
(1994).

As a preliminary remark, one should keep in mind that there
are, broadly, two complementary ways of thinking about lin-
ear and tensor algebra. The coordinate approach defines vec-
tors, matrices, tensors, etc., in terms of their coordinate com-
ponents in a particular coordinate system, and postulates some-
what mechanistic rules for transforming these components under
change of coordinate frames. The intrinsic (or abstract) approach
defines these objects as abstract entities (namely, various kinds
of linear functions) that exist independently of coordinate sys-
tems, and derives rules for coordinate manipulation as a result.
For example, in the coordinate approach, a matrix is defined as
an n×m array of numbers. In the intrinsic approach, it is a linear
function mapping rank-m vectors to rank-n vectors.

Historically, the coordinate approach was developed first,
and favours applications of the theory (which is why it is preva-
lent in e.g. physics and engineering). The intrinsic approach is
favoured by theoretical mathematicians, since it has proven to
be a more powerful way of extending the theory. When apply-
ing the theory to a new field (e.g. to the RIME), the mechanis-
tic rules may be a necessity (especially when it comes to soft-
ware implementations), but it is critically important to maintain
conceptual links to the intrinsic approach, since that is the only
way to verify that the application remains mathematically sound.
This appendix therefore tries to explain things in terms of both
approaches.

A.1. Einstein notation

Einstein notation uses upper and lower indices to denote com-
ponents of multidimensional entities. For example, xi refers to
the i-th component of the vector x (rather than to x to the power
of i!), and yi refers to the i-th component of the covector (see
below) y. Under the closely-related abstract index notation, xi

may be used to refer to x itself, with the index i only serving to
indicate that x is a one-dimensional object. Whether xi refers to
the whole vector or to its i-th component is usually obvious from
context (i.e. from whether a specific value for i has been implied
or not).

In general, upper indices are associated with contravariant
components (i.e., those that transform contravariantly), while
lower indices refer to covariant ones. The following section will
define these concepts in detail.
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Einstein summation is a convention whereby the same index
appearing in both an upper and lower position implies summa-
tion. That is,

xiyi =

N∑
i=1

xiyi, Ai
i =

N∑
i=1

Ai
i.

An index that is repeated in the same position (e.g. xiyi) does
not imply summation13. I shall be using the summation conven-
tion from this point on, unless otherwise stated.

A.2. Vectors, covectors, co- and contravariancy

A vector can be thought of (in the coordinate approach) as a
list of N scalars drawn from a scalar field F (e.g., the field of
complex numbers, C). The set of all such vectors forms up the
vector space V = FN . For example, the Jones formalism is based
on the vector space C2, while the Wolf formalism is based on C3.

The intrinsic definition of a vector is straightforward but
somewhat laborious, and can be looked up in any linear alge-
bra text, so I will not reproduce it here. Intuitively, this is just
the familiar concept of a length and direction in N-dimensional
space. It is important to distinguish the vector as an abstract ge-
ometrical entity, existing independently of coordinate systems,
from the list of scalars making up its representation in a specific
coordinate frame. The terminology is also unhelpfully ambigu-
ous; I will try to use vector by itself for the abstract entity, and
column vector, row vector or components when referring to its
coordinates.

A coordinate frame in vector space V is defined by a set of
linearly independent basis vectors e1, ..., eN . Given a coordinate
frame, any vector x can be expressed as a linear combination of
the basis vectors: x = xiei (using Einstein notation). Each com-
ponent of the vector, xi, is a scalar drawn from F. In matrix no-
tation, the representation of x is commonly written as a column
vector:

x =


x1

...
xN


A covector (or a dual vector) f represents a linear func-

tion from V to F, i.e. a linear function f (x) that maps vectors
to scalars (in other words, covectors operate on vectors). This
can also be written as f : V 7→ F. The set of all covectors forms
the dual space of V, commonly designated as V∗. In a specific
coordinate frame, any covector may be represented by a set of N
scalar components fi, so that the operation f (x) becomes a sim-
ple sum: f (x) = xi fi. In matrix notation, covectors are written as
row vectors:

f = ( f1 ... fN) ,

and the operation f (x) is then just the matrix product of a
row vector and a column vector, f x. Note that this definition is
completely symmetric: we could as well have postulated a cov-
ector space, and defined the vector as a linear function mapping
covectors onto scalars.

13 This point is occasionally ignored in the literature, i.e. one will see
xiyi implying summation over i as well. This is mathematically sloppy
from a purist’s point of view.

A.2.1. Coordinate transforms

In the coordinate approach, both vectors and covectors are repre-
sented by N scalars: the crucial difference is in how these num-
bers change under coordinate transforms. Consider two sets of
basis vectors, E = {ei} and E′ = {e′i}. Each vector of the basis
E′ can be represented by a linear combination of the basis E, as
e′j = ai

jei. The components ai
j form the transformation matrix A,

which is an N×N, invertible matrix. The change of basis can also
be written as a matrix-vector product, by laying out the symbols
for the basis vectors in a column, and formally following the
rules of matrix multiplication:

e′1
...

e′N

 =


a1

1 · · · a1
N

...
...

aN
1 · · · aN

N




e1
...

eN

 .
Let x and x′ be two column vectors representing the same

vector in basis E and E′, respectively; let f and f ′ be two row
vectors representing a covector.

The crucial bit is this: in order for x and x′ to represent the
same vector in both coordinate systems, their components must
transform contravariantly, that is, as

x′ = A−1x, or x′i = ãi
jx

j,

(in matrix or Einstein notation, respectively), where ãi
j are the

components of A−1. In other words, the components of a vec-
tor transform in an opposite way to the basis14, hence con-
travariantly.

On the other hand, in order for f and f ′ to represent the same
covector (i.e. the same linear functional), their components must
transform covariantly:

f ′ = fA, or f ′i = ai
j f j.

Vectors and linear functions (or covectors) are the two fun-
damental ingredients of the RIME.

A.3. Vector products and metrics

A.3.1. Inner product

An inner product on the vector space RN or CN is a function
that maps two vectors onto a scalar. It is commonly designated
as 〈x, y〉 = c. Any function that is (1) linear, (2) conjugate-
symmetric (〈x, y〉 = 〈y, x〉∗; for vector spaces over R this is
simply symmetric), and (3) positive-definite (〈x, x〉 > 0 for all
x , 0) can be adopted as an inner product.

The dot product on Euclidean space RN

x · y =

N∑
i=1

xiyi,

is an example of an inner product. In fact, since this paper (and
other RIME-related literature) already uses angle brackets to de-
note averaging in time and frequency, I shall instead use the dot
notation for inner products in general.

In matrix notation, the general form of an inner product on
CN spaces is x · y = yHMx, where M is a positive-definite

14 For a simple example, consider a basis E′ that is simply E scaled
up by a factor of 2: e′i = 2ei. In the E′ frame, a vector’s coordinates will
be half of those in E.
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Hermitian N × N matrix. In order for this product to remain in-
variant under coordinate transform, the M matrix must transform
as M′ = AHMA (where A is the transformation matrix defined in
the previous section), i.e. doubly-covariantly. Looking ahead to
Sect. A.4, this is an example of a (0,2)-type tensor. Another way
to look at it is that the inner product defines a metric on the vec-
tor space, and M gives the covariant metric tensor, commonly
designated as M = gi j. In Einstein notation, the inner product of
xi and y j is then gi jxiy j, where y j is the complex conjugate of y j.

Given a coordinate system, any choice of Hermitian positive-
definite M induces an inner product and a metric. In particular,
choosing M to be unity results in a natural metric of x · y = yH x,
which is in fact the one implicitly used in all RIME literature
to date. Note, however, that if we change coordinate systems,
the metric only remains natural if A is a unitary transforma-
tion (AHA = 1). For example, a rigid rotation of the coordinate
frame is unitary and thus preserves the metric, while a skew of
the coordinates changes the metric. The other coordinate trans-
form commonly encountered in the RIME, that between linear
xy and circularly-polarized rl coordinates, is also unitary.

In tensor notation, the Kronecker delta δi j (δi j = 1 for i = j,
and 0 fo i , j), is often used to indicate a unity M, i.e. as M =
gi j = δi j.

A.3.2. Index lowering and conjugate covectors

An inner product induces a natural mapping (isomorphism) be-
tween V and V∗, i.e. a pairing up of vectors and covectors. For
any vector y, its conjugate covector ȳ can be defined as the linear
functional ȳ(w) = w · y. On CN space, this function is given by
ȳ(w) = yHMw, meaning simply that

ȳ = yHM, or ȳi = gi jy j,

in matrix or Einstein notation, respectively. This operation
is also known as index lowering. In a coordinate frame with the
natural metric δi j, index lowering is just the Hermitian transpose:
ȳ ≡ yH , or ȳi = yi.

For conciseness, this paper uses the notation [yi]∗ or ȳi (i.e.
bar over symbol only) to denote the conjugate covector (or its
i-th component) of the vector y. Note how this is distinct from
the complex conjugate of the i-th component, which is denoted
by a bar over both the symbol and all indices, e.g. yi.

A.3.3. Outer product

Given two vector spaces V and W and the dual space W∗, the
outer product of the vector x ∈ V and the covector y∗ ∈ W∗,
denoted as B = x ⊗ y∗, produces a linear transform between W
and V (which, in other words, is a matrix), that is defined as:

B(w) = xy∗(w), or [B(w)]i = xiy jw j

i.e. the function given by y∗ is applied to w (producing a scalar),
which is then multiplied by the vector x.

Intrinsically, the outer product is defined on a vector and a
covector. If we also have an inner product on W, we can use it
to define the outer product operation on two vectors, as x ⊗ y =
x ⊗ ȳ, where ȳ is the conjugate covector of y (see above).

Given a coordinate system in a complex vector space, the ȳ
covector corresponds to the linear function ȳ(w) = yHMw, and
the outer product B = x ⊗ y is then

B(w) = xyHMw, or [B(w)]i = g jk xiykw j.

In other words, the outer product of x and y is given by the matrix
product xyHM; in Einstein notation the corresponding matrix
components are bi

j = g jk xiyk.

Consider now a change of coordinates given by the transfor-
mation matrix A. In the new coordinate system, the outer product
becomes

A−1xyHMA, or b′lm = ãl
ia

j
mg jk xiyk.

i.e. is transformed both contra- and covariantly. This is an
example of a (1,1)-type tensor.

A.4. Tensors

A tensor is a natural generalization of the vector and matrix con-
cepts. In the coordinate approach, an (n,m)-type tensor over the
vector space V = FN is given by an (n + m)-dimensional array of
scalars (from F). A tensor is written using n upper and m lower
indices, e.g.: Ti1i2...in

j1 j2... jm
. The rank of the tensor is n + m. A vector

(column vector) xi is a (1,0)-type tensor, a covector (row vector)
y j is a (0,1)-type tensor, and a matrix is typically a (1,1)-type
tensor. Note that the range of each tensor index is, implicitly,
from 1 to N, where N is the rank of the original vector space.

The upper indices correspond to contravariant components,
and the lower indices to covariant components. Under a change
of coordinates given by A = ai

j (A−1 = ãi
j), the components of

the tensor transform n times contravariantly and m times covari-
antly:

T′i1i2...in
j1 j2... jm

= ãi1
k1
· ... · ãin

kn
· al1

j1
· ... · alm

jm
· Tk1k2...kn

l1l2...lm
(A.1)

In the case of a Jones matrix (a (1,1)-type tensor), this rule
corresponds to the familiar15 matrix transformation rule of J′ =
A−1JA.Note that on the other hand, the metric M used to specify
the inner product (Sect. A.3.1) transforms differently, being a
(0,2)-type tensor.

As far as typographical conventions go, this paper uses sans-
serif capitals (Ti

j) to indicate tensors in general, and lower-case
italics (xi, y j) for vectors and covectors.

In the intrinsic (abstract) definition, a tensor is simply a lin-
ear function mapping m vectors and n covectors onto a scalar.
This can be written as

T : V × · · · × V︸        ︷︷        ︸
m times

×V∗ × · · · × V∗︸           ︷︷           ︸
n times

7→ F,

or as T(x1, ..., xm, y∗1, ..., y
∗
n) = c. All the coordinate transform

properties then follow from this one basic definition.
As a useful exercise, consider that a (1,1)-type tensor, which

by this definition is a linear function T : V × V∗ 7→ F, can be
easily recast into as a linear transform of vectors. For any vec-
tor v, consider the corresponding function v′(w∗), operating on
covectors, defined as v′(w∗) = T(v,w∗). This is a linear function
mapping covectors to scalars, which as we know (see Sect A.2)
is equivalent to a vector. We have therefore specified a linear
transform between v and v′. On the other hand, we know that the
latter can also be specified as a matrix – and therefore a matrix
is a (1,1)-type tensor.

This line of reasoning becomes almost tautological if one
writes out the coordinate components in Einstein notation. The

15 Note that in Paper I (Smirnov 2011a, Sect. 6.3) this shows up as
JT = TJS T−1, since the T matrix defined therein is exactly the inverse
of A here.
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result of T applied to the vector vi and the covector wi is a scalar
given by the sum

T(vi,w j) = Ti
jv

jwi = (Ti
jv

j)wi.

Dropping wi and evaluating just the sum Ti
jv

j for each i results
in N scalars, which are precisely the components of v′i:

v′i = Ti
jv

j,

which on the other hand is just multiplication of a matrix by a
column vector, written in Einstein notation.

A.4.1. Transposition and tensor conjugation

As a purely formal operation, transposition (in tensor notation)
can be defined as a swapping of upper and lower indices:

[vi]T = vi, [Ai
j]

T = A j
i ,

and the Hermitian transpose can be defined by combining this
with complex conjugation. However, in the presence of a non-
natural metric (Sect. A.3.1), this is a purely mechanical oper-
ation with no underlying mathematical meaning, since it turns
e.g. a vector into an entirely unrelated covector.

A far more meaningful operation is given by the index low-
ering procedure of Sect. A.3.2, used to obtain conjugate covec-
tors: v̄i = gi jv j, and by its counterpart, index raising: w̄i = gi jw j,
where gi j is the contravariant metric tensor (essentially the in-
verse of gi j). This kind of tensor conjugation can be generalized
to the matrix case as:

Āi
j = giαg jβA

β
α.

In the case of a natural metric gi j = δi j (and only in this case),
tensor conjugation is the same as a mechanical Hermitian trans-
pose.

For conciseness, this paper uses the notation x̄i to denote ten-
sor conjugation, i.e. x̄i is the conjugate covector of the vector xi.

A.5. Tensor operations and the Einstein notation

Einstein notation allows for some wonderfully compact repre-
sentations of linear operations on tensors, which result in other
tensors. Some of these were already illustrated above:

Inner product: gi jxiy j = c, resulting in a scalar.
Index lowering: ȳi = gi jy j, converting a (1,0)-type tensor (a

vector) into a (0,1)-type tensor (its conjugate covector).
Outer product of a vector and a covector, bi

j = xiy j, result-
ing in a (1,1)-type tensor (a matrix).

Matrix multiplication of a matrix by a vector, resulting in
another vector: v′i = Ti

jv
j.

Consider now multiplication of two matrices, which in
Einstein notation can be written as

Ai
j = Bi

kC
k
j.

Here, k is a summation index (since it is repeated), while i and
j are free indices. Free indices propagate to the left-hand side
of the expression. This is a very easy formal rule for keeping
track of what the type of the result of a tensor operation is. For
example, the result of Ai j

klB
kCi j is a (0,1)-type tensor, dl (i.e. just a

humble covector), since l is the only free index in the expression.

In complicated expressions, a useful convention is to use
Greek letters for the summation indices, and Latin ones for the
free indices: Ai

θB
θ
j. This makes the expressions easier to read,

but is not always easy to follow consistently. This paper tries to
follow this convention as much as possible when recasting the
RIME in tensor form.

The true power of Einstein notation is that it establishes rel-
atively simple formal rules for manipulating tensor expressions.
These rules can help reduce complex expressions to manageable
forms.

A.5.1. No duplicate indices in the same position

Consider the expression xiyi. The index i is nominally free, so
can we treat the result as a (1,0)-type tensor zi = xiyi? The an-
swer is no, because zi does not transform as a (1,0)-type tensor.
Under change of coordinates, we have

z′i = x′iy′i = (ãi
jx

j)(ãi
k xk) = ãi

jã
i
k x jxk,

which is not a single contravariant transform. In fact, zi trans-
forms as a (2,0)-type tensor.

Summation indices cannot appear multiple times either: the
expression Wi

j = Xi
αYαZαj is not a valid (1,1)-type tensor!

In general, any expression in Einstein notation will not yield
a valid tensor if it contains repeated indices in the same (upper
or lower) position. However, in this paper I make use of mixed-
dimension tensors (Sect. A.6.2), with a restricted set of coordi-
nate transforms, which results in some indices being effectively
invariant. Invariant indices can be repeated.

A.5.2. Commutation

The terms in an Einstein sum commute! For any particular set
of index values, each term in the sum represents a scalar, and the
scalars as a whole make up one product in some complicated
nested sum – and scalars commute. For example, the matrix
product AB = Ai

αBα
j can be rewritten as Bα

j A
i
α without changing

the result. Were we to swap the matrices themselves around, the
Einstein sum would become Bi

αAα
j , Bα

j A
i
α. Note how the rela-

tive position (upper vs. lower) of the summation index changes.
In one case we’re summing over columns of B and rows of A, in
the other case over columns of A and rows of B.

A.5.3. Conjugation

The tensor conjugate of a product is a product of the conjugates,
with upper and lower indices swapped:

yi = Ai
αxα, ȳi =

[
Ai
αxα

]∗
= Āα

i x̄α.

Ci
j = Ai

αBα
j , C̄ j

i =
[
Ai
αBα

j

]∗
= Āα

i B̄ j
α.

This follows from the definition of conjugation in
Sect. A.4.1, and the commutation considerations above.

A.5.4. Isolating sub-products and collapsing indices

Summation indices can be “collapsed” by isolating intermediate
products that contains all occurrences of that index. For example,
in the sum Ai

αBα
βCβ

j , the index β can be collapsed by defining

the intermediate product Eα
j = Bα

βCβ
j . The sum then becomes

14



O.M. Smirnov: Revisiting the RIME. IV. A generalized tensor formalism

simply a matrix product, Ai
αEα

j . It is important that the isolated
sub-product contain all occurrences of the index. For example,
it would be formally incorrect to isolate the sub-product Fαj =

Bα
βCβ

j , since the sum then become Ai
αFαj D

β. The “loose” β index
on D then changes the type of the result.

A.6. Mapping the RIME onto tensors

This section contains some in-depth mathematical details (that
have been glossed over in the main paper) pertaining to how
the concepts of the RIME map onto formal definitions of tensor
theory.

A.6.1. Coherency as an outer product

The outer product operation is crucial to the RIME, since it
is used to characterize the coherency of two EMF or volt-
age vectors. In tensor terms, the outer product can be defined
(Sect. A.3.3) in a completely abstract and coordinate-free way.
By contrast, the definition usually employed in physics litera-
ture, and the RIME literature in particular, consists of a for-
mal, mechanical manipulation of vectors (in the list-of-numbers
sense). In particular, to derive the 4 × 4 formalism, Hamaker
et al. (1996) (see also Paper I, Smirnov 2011a, Sect. 6.1) used
the Kronecker product form:

(
x1
x2

)
⊗

(
y1
y2

)
=


x1y1
x1y2
x2y1
x2y2

 ,

while the Jones formalism is emerged (Hamaker 2000;
Smirnov 2011a, Sect. 1) by using the matrix product xyH in-
stead. Note that while the former operation produces 4-vectors
and the latter 2× 2 matrices, the two are isomorphic. It is impor-
tant to establish whether an outer product defined in this way is
fully equivalent to that defined in tensor theory.

In fact, by defining the outer product as xyH in a specific
coordinate system, we’re implicitly postulating a natural metric
(M = δi j) in that coordinate system. This is of no consequence
if only a single coordinate system is used, or if we restrict our-
selves to unitary coordinate transformations, as is the case for
transformations between xy linearly polarized and rl circularly
polarized coordinates (such coordinate frames are called mutu-
ally unitary). It is something to be kept in mind, however, if for-
mulating the RIME in a coordinate-free way.

An outer product given by V = xyH in a specific coordi-
nate system transforms as A−1VA under change of coordinates,
just like Jones matrices do. Alternatively, we may mechanically
define an outer product-like operation as W = xyH in all coor-
dinate systems, and this would then transform as A−1V[A−1]H .
The two definitions are only equivalent under unitary coordi-
nate transformations! This is an easily overlooked point, most
recently missed by the author of this paper: in Paper I (Smirnov
2011a, Sect. 6.3), only the second transform is given for co-
herency matrices, with no mention of the first. It may be some-
what academic in practice, since all applications of the RIME to
date have restricted themselves to the mutually unitary xy and
rl coordinate frames, but it may be relevant for future develop-
ments.

A.6.2. Mixed-dimensionality tensors

Under the strict definition, a tensor is associated with a single
vector field FN , and so must be represented by an N ×N × ...×N
array of scalars. In other words, all its indices must have the
same range from 1 to N.

Applied literature (and the present paper in particular) often
makes use of mixed-dimensionality tensors (MDTs), i.e. arrays
of numbers with different dimensions. In particular, Sect. 3.2 in-
troduces the visibility MDT Vpi

q j, with nominal dimensions of
N×N×2×2. Such entities are not proper tensors in the strict def-
inition, so we should formally establish to what extent they can
be treated as such. The point is not entirely academic. Einstein
summation (or any of the other operations discussed above) can
be mechanically applied to arbitrary arrays of numbers, but the
results are not guaranteed to be self-consistent under change of
coordinates unless it can be formally established that they be-
have like tensors. Conversely, if we can formally establish that
some operation yields a tensor of type (n,m), then we know ex-
actly how to transform it.

At first glance, MDTs seem to be significantly different from
proper tensors. The difficulty lies in the fact that they seem to
have two categories of indices. For example, Vpi

q j has “2-indices”
(or “3-indices”) i, j, associated with the vector space C2 or C3,
with respect to which the MDT behaves like a proper tensor,
and “N-indices” like p and q, which only serve to “bundle”
lower-ranked tensors together. Vpi

q j really behaves like a bundle
of matrices (rank-2 tensors) rather than a proper rank-4 tensor.
In particular, the coordinate transforms we normally consider in-
volve the 2-indices only, and not the N-indices, so Vpi

q j really
transforms like a (1-1)-type tensor. Fortunately, it turns out that
MDTs can be mapped to proper tensors in a mathematically rig-
orous way.

Let’s assume we have a vector space like C2 (which we’ll
call the core space), with a core metric of gi j, and MDTs with
a combination of 2-indices and N-indices. For illustration, con-
sider the simpler case of the matrix Wi

p, which (under the above
terminology) is really a bundle of N 2-vectors:

W =

(
w1

1 w1
2 . . . w1

N
w2

1 w2
2 . . . w2

N

)
Let’s formally map MDTs to conventional tensors over C2+N

space as follows:

V̂pi
q j =

{
V(p−2)i

(q−2) j if p > 2, q > 2, i ≤ 2, j ≤ 2
0, otherwise,

(A.2)

This can be generalized to any mix of 2- and N-indices. We’ll
use the term 2-restricted tensor for any tensor over C2+N whose
components are null if any N-index is equal to 2 or less, or any
2-index is above 2. Note that this mapping from MDTs to 2-
restricted tensors is isomorphic: every 2-restricted tensor over
C2+N has a unique MDT counterpart.

For the matrix Wi
p, the mapping procedure effectively pads

it out with nulls to make a (N + 2) × (N + 2) matrix:

Ŵ =


0 0 w1

1 w1
2 . . . w1

N
0 0 w2

1 w2
2 . . . w2

N
0 0 0 0 . . . 0
...

...
0 0 0 0 . . . 0


(A.3)
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In a sense, this procedure partitions the dimensions of the
C2+N space into the core dimensions (the first two), and the
“bundling” dimensions (the other N). Formally, all the indices
of V̂ and Ŵ range from 1 to N + 2, but 2-restricted tensors are
constructed in such a way that components whose indices are
“out of range” are all null.

Now let’s also map the coordinate transforms of the core
space C2 onto a subset of the coordinate transforms of C2+N ,
using a transformation matrix of the form

A =



a1
1 a1

2 0 0 . . . 0
a2

1 a2
2 0 0

0 0 1 0
0 0 0 1
...

. . . 0
0 . . . 0 1


(i.e. ai

j = δi
j if i or j > 2), (A.4)

where δi
j is the Kronecker delta. The Ŵ matrix transforms as

A−1ŴA; it is easy to verify that it retains the same padded layout
as Eq. (A.3) under such restricted coordinate transforms, and that
the upper-right block of the padded matrix actually transforms
to A−1

(2)W, where A(2) is the upper-left 2 × 2 corner of A (giving
the original transform of C2). In other words, every vector w j of
the bundle transforms as A−1

(2)w j, exactly as vectors over the core
space do!

This property generalizes to higher-rank tensors. For exam-
ple, the 2-restricted tensor V̂pi

q j should formally transform as (see
Eq. (A.1)):

V̂′
pi
q j = ãp

σãi
αaτqaβj V̂

σα
τβ ,

However, for p ≤ 2 we have V̂σα
τβ = 0 by definition, while for

p > 2, ãp
σ = 1 for p = σ, and is null otherwise. Therefore, only

the p = σ (and, similarly, q = τ) terms contribute to the sum
above. Thus,

V̂′
pi
q j = ãi

αaβj V̂
pα
qβ ,

so our nominally (2,2)-type tensor V̂pi
q j behaves exactly like

a (1,1)-type tensor under any coordinate transform given by
Eq. (A.4). The p and q indices can be called invariant (as
opposed to co- or contravariant). In general, any 2-restricted
(n,m)-type tensor having (n′,m′) 2-indices always behaves as
an (n′,m′)-type tensor under such coordinate transforms.

For the same reason, we can relax the rules of Einstein
summation to allow repeated invariant indices. For example,
zi = xiyi is not a valid tensor (one index, but transforms doubly-
contravariantly!), but Zi

p = X j
pYi

jp is a perfectly valid tensor,
since an extra invariant index p does not change how the com-
ponents transform.

Furthermore, it is easy to see that a 2-restricted tensor re-
mains 2-restricted under any coordinate transform of the core
vector space, so the property of being 2-restricted is, in a sense,
intrinsic. Any product of 2-restricted tensors is also 2-restricted.
In other words, 2-restricted tensors form a closed subset un-
der coordinate transforms of the core vector space, and under
all product operations. To complete the picture, we can define
a metric in C2+N by using the core metric for the core dimen-
sions, and the natural metric for the “bundling” dimensions, so

that tensor conjugation is expressed in terms of the core metric
only:

V̄pi
q j = giαg jβVqα

pβ.

To summarize, we have formally established that MDTs with
a core vector space of CM and a second16 dimensionality of N
can be isomorphically mapped onto the set of M-restricted ten-
sors over CM+N . Under coordinate transforms of the core vector
space, such tensors behave co- and contravariantly with respect
to the M-indices, and invariantly with respect to the N-indices.
We are therefore entitled to treat MDTs as proper tensors for the
purposes of this paper.
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